Photocatalytic Activity of ZnO Nanoparticles Prepared by a Microwave Method in Ethylene Glycol and Polyethylene Glycol Media: A Comparative Study

Article Preview

Abstract:

Zinc oxide nanoparticles have been synthesized by a sol-gel microwave assisted method using either ethylene glycol (ZnO-EG) or poly ethylene glycol ethanolic solution (ZnO-PEG) as dispersing media. The nanoparticles were characterized by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared. X-ray analysis revealed a hexagonal phase structure of both zinc oxides. The average crystallite size calculated from Scherrer equation was 27 nm and 53 nm in good agreement with 24 nm and 55 nm microscopic results for ZnO-EG and ZnO-PEG, respectively. The catalytic activity of the as-prepared nanoparticles was compared by the photodegradation of 2-nitrophenol under UVC. The effect of various parameters such as pH, catalyst weight, and pollutant concentration on the percent degradation was investigated. Best optimization was pH=7, 0.06g of nanoparticles weight, and 10 mg.L-1 pollutant concentration. Furthermore, pseudo first order kinetic based on Langmuir–Hinshelwood (L–H) model was proposed for degradation reactions and experimental data were in good agreement with this model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-64

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Tripathi, R.C. Upadhyay, S. Singh, Mineralization of mono-nitrophenols by Bjerkandera adusta and Lentinus squarrosulus and their extracellular ligninolytic enzymes, Journal of Basic Microbiology, 51 (2011) 635-649.

DOI: 10.1002/jobm.201000436

Google Scholar

[2] M.L. Polo-Luque, B.M. Simonet, M. Valcárcel, Solid-phase extraction of nitrophenols in water by using a combination of carbon nanotubes with an ionic liquid coupled in-line to CE, ELECTROPHORESIS, 34 (2013) 304-308.

DOI: 10.1002/elps.201200367

Google Scholar

[3] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for nitrophenols, Department of Health and Human Services, Public Health Service, Atlanta, GA: U.S., in, (1992).

DOI: 10.15620/cdc:95222

Google Scholar

[4] M.R. Haghighi Podeh, S.K. Bhattacharya, M. Qu, Effects of nitrophenols on acetate utilizing methanogenic systems, Water Res., 29 (1995) 391-399.

DOI: 10.1016/0043-1354(94)00193-b

Google Scholar

[5] Z.I. Bhatti, H. Toda, K. Furukawa, p-Nitrophenol degradation by activated sludge attached on nonwovens, Water Res., 36 (2002) 1135-1142.

DOI: 10.1016/s0043-1354(01)00292-5

Google Scholar

[6] P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater., 149 (2007) 609-614.

DOI: 10.1016/j.jhazmat.2007.06.111

Google Scholar

[7] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev., 43 (2014) 765-778.

DOI: 10.1039/c3cs60262a

Google Scholar

[8] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[9] S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581-590.

DOI: 10.1016/j.jhazmat.2006.07.035

Google Scholar

[10] Y. Li, B. -P. Zhang, J. -X. Zhao, Z. -H. Ge, X. -K. Zhao, L. Zou, ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties, Appl. Surf. Sci., 279 (2013) 367-373.

DOI: 10.1016/j.apsusc.2013.04.114

Google Scholar

[11] C. Ye, Y. Bando, G. Shen, D. Golberg, Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets, The Journal of Physical Chemistry B, 110 (2006) 15146-15151.

DOI: 10.1021/jp061874w

Google Scholar

[12] R. Wahab, S.K. Tripathy, H. -S. Shin, M. Mohapatra, J. Musarrat, A.A. Al-Khedhairy, N. Kumar Kaushik, Photocatalytic oxidation of acetaldehyde with ZnO-quantum dots, Chem. Eng. J., 226 (2013) 154-160.

DOI: 10.1016/j.cej.2013.02.128

Google Scholar

[13] K. Wetchakun, N. Wetchakun, B. Inceesungvorn, S. Phanichphant, Photodegradation of Phenol over Flame-Made Sn-Doped ZnO Nanoparticles, Journal of Nano Research, 16 (2012) 97-103.

DOI: 10.4028/www.scientific.net/jnanor.16.97

Google Scholar

[14] X. Wang, W. Wang, P. Liu, p. Wang, L. Zhang, Photocatalytic degradation of E. coli membrane cell in the presence of ZnO nanowires, Journal of Wuhan University of Technology-Mater. Sci. Ed., 26 (2011) 222-225.

DOI: 10.1007/s11595-011-0201-9

Google Scholar

[15] N. Assi, A. Mohammadi, Q. Sadr Manuchehri, R.B. Walker, Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho-nitrophenol, Desalination and Water Treatment, 54 (2014).

DOI: 10.1080/19443994.2014.891083

Google Scholar

[16] P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Surface and photocatalytic properties of ZnO thin film prepared by sol–gel method, Thin Solid Films, 520 (2012) 5561-5567.

DOI: 10.1016/j.tsf.2012.04.050

Google Scholar

[17] J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method, Superlattices Microstruct., 50 (2011) 98-106.

DOI: 10.1016/j.spmi.2011.05.003

Google Scholar

[18] L. -Y. Yang, S. -Y. Dong, J. -H. Sun, J. -L. Feng, Q. -H. Wu, S. -P. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard. Mater., 179 (2010) 438-443.

DOI: 10.1016/j.jhazmat.2010.03.023

Google Scholar

[19] K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles, Physica B: Condensed Matter, 405 (2010) 3180-3185.

DOI: 10.1016/j.physb.2010.04.042

Google Scholar

[20] S. Horikoshi, N. Serpone, Nanoparticle Synthesis through Microwave Heating, in: Microwaves in Nanoparticle Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp.75-105.

DOI: 10.1002/9783527648122.ch5

Google Scholar

[21] A. Verma, R. Dwivedi, R. Prasad, K.S. Bartwal, Microwave-Assisted Synthesis of Mixed Metal-Oxide Nanoparticles, Journal of Nanoparticles, 2013 (2013) 11.

DOI: 10.1155/2013/737831

Google Scholar

[22] K. Prem Ananth, S.P. Jose, K. Venkatesh, R. Ilangovan, Size Controlled Synthesis of Magnetite Nanoparticles Using Microwave Irradiation Method, Journal of Nano Research, 24 (2013) 184-193.

DOI: 10.4028/www.scientific.net/jnanor.24.184

Google Scholar

[23] Y. -J. Zhu, F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase, Chem. Rev., 114 (2014) 6462-6555.

DOI: 10.1021/cr400366s

Google Scholar

[24] N. Soltani, E. Saion, M.Z. Hussein, A. Bahrami, K. Naghavi, R.B. Yunus, Microwave irradiation effects on hydrothermal and polyol synthesis of ZnS nanoparticles, Chalcogenide Lett, 9 (2012) 265-274.

Google Scholar

[25] Y. Zhao, J. -J. Zhu, J. -M. Hong, N. Bian, H. -Y. Chen, Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology, Eur. J. Inorg. Chem., 2004 (2004) 4072-4080.

DOI: 10.1002/ejic.200400258

Google Scholar

[26] D. Morselli, M. Niederberger, I. Bilecka, F. Bondioli, Double role of polyethylene glycol in the microwaves-assisted non-hydrolytic synthesis of nanometric TiO2: oxygen source and stabilizing agent, J. Nanopart. Res., 16 (2014) 1-11.

DOI: 10.1007/s11051-014-2645-2

Google Scholar

[27] M.N. Nadagouda, R.S. Varma, Microwave-Assisted Shape-Controlled Bulk Synthesis of Ag and Fe Nanorods in Poly(ethylene glycol) Solutions, Crystal Growth & Design, 8 (2008) 291-295.

DOI: 10.1021/cg070473i

Google Scholar

[28] R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, Comparative study on photocatalytic activity of ZnO prepared by different methods, J. Mol. Liq., 181 (2013) 133-141.

DOI: 10.1016/j.molliq.2013.02.023

Google Scholar

[29] U.I. Gaya, A.H. Abdullah, Z. Zainal, M.Z. Hussein, Photocatalytic Degradation of 2, 4-dichlorophenol in Irradiated Aqueous ZnO Suspension, (2010).

DOI: 10.5539/ijc.v2n1p180

Google Scholar

[30] F. Mohd Omar, H. Abdul Aziz, S. Stoll, Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid, Sci. Total Environ., 468–469 (2014) 195-201.

DOI: 10.1016/j.scitotenv.2013.08.044

Google Scholar

[31] D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an organic pollutant by zinc oxide – solar process, Arabian Journal of Chemistry.

DOI: 10.1016/j.arabjc.2012.05.006

Google Scholar

[32] K. -H. Wang, Y. -H. Hsieh, M. -Y. Chou, C. -Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Applied Catalysis B: Environmental, 21 (1999) 1-8.

DOI: 10.1016/s0926-3373(98)00116-7

Google Scholar

[33] M. Sugiyama, Z. Salehi, M. Tokumura, Y. Kawase, Photocatalytic degradation of p-nitrophenol by zinc oxide particles, Water Science & Technology, 65 (2012) 1882-1886.

DOI: 10.2166/wst.2012.080

Google Scholar

[34] H.R. Pouretedal, M. Kiyani, Photodegradation of 2-nitrophenol catalyzed by CoO, CoS and CoO/CoS nanoparticles, Journal of the Iranian Chemical Society, 11 (2014) 271-277.

DOI: 10.1007/s13738-013-0297-2

Google Scholar

[35] N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (2007).

DOI: 10.1016/j.seppur.2007.07.016

Google Scholar

[36] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 162 (2004) 317-322.

DOI: 10.1016/s1010-6030(03)00378-2

Google Scholar

[37] M. Mehrvar, W.A. Anderson, M. Moo-Young, P.M. Reilly, Non-linear parameter estimation for a dynamic model in photocatalytic reaction engineering, Chem. Eng. Sci., 55 (2000) 4885-4891.

DOI: 10.1016/s0009-2509(00)00114-7

Google Scholar