[1]
A. Tripathi, R.C. Upadhyay, S. Singh, Mineralization of mono-nitrophenols by Bjerkandera adusta and Lentinus squarrosulus and their extracellular ligninolytic enzymes, Journal of Basic Microbiology, 51 (2011) 635-649.
DOI: 10.1002/jobm.201000436
Google Scholar
[2]
M.L. Polo-Luque, B.M. Simonet, M. Valcárcel, Solid-phase extraction of nitrophenols in water by using a combination of carbon nanotubes with an ionic liquid coupled in-line to CE, ELECTROPHORESIS, 34 (2013) 304-308.
DOI: 10.1002/elps.201200367
Google Scholar
[3]
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for nitrophenols, Department of Health and Human Services, Public Health Service, Atlanta, GA: U.S., in, (1992).
DOI: 10.15620/cdc:95222
Google Scholar
[4]
M.R. Haghighi Podeh, S.K. Bhattacharya, M. Qu, Effects of nitrophenols on acetate utilizing methanogenic systems, Water Res., 29 (1995) 391-399.
DOI: 10.1016/0043-1354(94)00193-b
Google Scholar
[5]
Z.I. Bhatti, H. Toda, K. Furukawa, p-Nitrophenol degradation by activated sludge attached on nonwovens, Water Res., 36 (2002) 1135-1142.
DOI: 10.1016/s0043-1354(01)00292-5
Google Scholar
[6]
P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater., 149 (2007) 609-614.
DOI: 10.1016/j.jhazmat.2007.06.111
Google Scholar
[7]
J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev., 43 (2014) 765-778.
DOI: 10.1039/c3cs60262a
Google Scholar
[8]
M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44 (2010) 2997-3027.
DOI: 10.1016/j.watres.2010.02.039
Google Scholar
[9]
S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581-590.
DOI: 10.1016/j.jhazmat.2006.07.035
Google Scholar
[10]
Y. Li, B. -P. Zhang, J. -X. Zhao, Z. -H. Ge, X. -K. Zhao, L. Zou, ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties, Appl. Surf. Sci., 279 (2013) 367-373.
DOI: 10.1016/j.apsusc.2013.04.114
Google Scholar
[11]
C. Ye, Y. Bando, G. Shen, D. Golberg, Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets, The Journal of Physical Chemistry B, 110 (2006) 15146-15151.
DOI: 10.1021/jp061874w
Google Scholar
[12]
R. Wahab, S.K. Tripathy, H. -S. Shin, M. Mohapatra, J. Musarrat, A.A. Al-Khedhairy, N. Kumar Kaushik, Photocatalytic oxidation of acetaldehyde with ZnO-quantum dots, Chem. Eng. J., 226 (2013) 154-160.
DOI: 10.1016/j.cej.2013.02.128
Google Scholar
[13]
K. Wetchakun, N. Wetchakun, B. Inceesungvorn, S. Phanichphant, Photodegradation of Phenol over Flame-Made Sn-Doped ZnO Nanoparticles, Journal of Nano Research, 16 (2012) 97-103.
DOI: 10.4028/www.scientific.net/jnanor.16.97
Google Scholar
[14]
X. Wang, W. Wang, P. Liu, p. Wang, L. Zhang, Photocatalytic degradation of E. coli membrane cell in the presence of ZnO nanowires, Journal of Wuhan University of Technology-Mater. Sci. Ed., 26 (2011) 222-225.
DOI: 10.1007/s11595-011-0201-9
Google Scholar
[15]
N. Assi, A. Mohammadi, Q. Sadr Manuchehri, R.B. Walker, Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho-nitrophenol, Desalination and Water Treatment, 54 (2014).
DOI: 10.1080/19443994.2014.891083
Google Scholar
[16]
P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Surface and photocatalytic properties of ZnO thin film prepared by sol–gel method, Thin Solid Films, 520 (2012) 5561-5567.
DOI: 10.1016/j.tsf.2012.04.050
Google Scholar
[17]
J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method, Superlattices Microstruct., 50 (2011) 98-106.
DOI: 10.1016/j.spmi.2011.05.003
Google Scholar
[18]
L. -Y. Yang, S. -Y. Dong, J. -H. Sun, J. -L. Feng, Q. -H. Wu, S. -P. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard. Mater., 179 (2010) 438-443.
DOI: 10.1016/j.jhazmat.2010.03.023
Google Scholar
[19]
K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles, Physica B: Condensed Matter, 405 (2010) 3180-3185.
DOI: 10.1016/j.physb.2010.04.042
Google Scholar
[20]
S. Horikoshi, N. Serpone, Nanoparticle Synthesis through Microwave Heating, in: Microwaves in Nanoparticle Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp.75-105.
DOI: 10.1002/9783527648122.ch5
Google Scholar
[21]
A. Verma, R. Dwivedi, R. Prasad, K.S. Bartwal, Microwave-Assisted Synthesis of Mixed Metal-Oxide Nanoparticles, Journal of Nanoparticles, 2013 (2013) 11.
DOI: 10.1155/2013/737831
Google Scholar
[22]
K. Prem Ananth, S.P. Jose, K. Venkatesh, R. Ilangovan, Size Controlled Synthesis of Magnetite Nanoparticles Using Microwave Irradiation Method, Journal of Nano Research, 24 (2013) 184-193.
DOI: 10.4028/www.scientific.net/jnanor.24.184
Google Scholar
[23]
Y. -J. Zhu, F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase, Chem. Rev., 114 (2014) 6462-6555.
DOI: 10.1021/cr400366s
Google Scholar
[24]
N. Soltani, E. Saion, M.Z. Hussein, A. Bahrami, K. Naghavi, R.B. Yunus, Microwave irradiation effects on hydrothermal and polyol synthesis of ZnS nanoparticles, Chalcogenide Lett, 9 (2012) 265-274.
Google Scholar
[25]
Y. Zhao, J. -J. Zhu, J. -M. Hong, N. Bian, H. -Y. Chen, Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology, Eur. J. Inorg. Chem., 2004 (2004) 4072-4080.
DOI: 10.1002/ejic.200400258
Google Scholar
[26]
D. Morselli, M. Niederberger, I. Bilecka, F. Bondioli, Double role of polyethylene glycol in the microwaves-assisted non-hydrolytic synthesis of nanometric TiO2: oxygen source and stabilizing agent, J. Nanopart. Res., 16 (2014) 1-11.
DOI: 10.1007/s11051-014-2645-2
Google Scholar
[27]
M.N. Nadagouda, R.S. Varma, Microwave-Assisted Shape-Controlled Bulk Synthesis of Ag and Fe Nanorods in Poly(ethylene glycol) Solutions, Crystal Growth & Design, 8 (2008) 291-295.
DOI: 10.1021/cg070473i
Google Scholar
[28]
R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, Comparative study on photocatalytic activity of ZnO prepared by different methods, J. Mol. Liq., 181 (2013) 133-141.
DOI: 10.1016/j.molliq.2013.02.023
Google Scholar
[29]
U.I. Gaya, A.H. Abdullah, Z. Zainal, M.Z. Hussein, Photocatalytic Degradation of 2, 4-dichlorophenol in Irradiated Aqueous ZnO Suspension, (2010).
DOI: 10.5539/ijc.v2n1p180
Google Scholar
[30]
F. Mohd Omar, H. Abdul Aziz, S. Stoll, Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid, Sci. Total Environ., 468–469 (2014) 195-201.
DOI: 10.1016/j.scitotenv.2013.08.044
Google Scholar
[31]
D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an organic pollutant by zinc oxide – solar process, Arabian Journal of Chemistry.
DOI: 10.1016/j.arabjc.2012.05.006
Google Scholar
[32]
K. -H. Wang, Y. -H. Hsieh, M. -Y. Chou, C. -Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Applied Catalysis B: Environmental, 21 (1999) 1-8.
DOI: 10.1016/s0926-3373(98)00116-7
Google Scholar
[33]
M. Sugiyama, Z. Salehi, M. Tokumura, Y. Kawase, Photocatalytic degradation of p-nitrophenol by zinc oxide particles, Water Science & Technology, 65 (2012) 1882-1886.
DOI: 10.2166/wst.2012.080
Google Scholar
[34]
H.R. Pouretedal, M. Kiyani, Photodegradation of 2-nitrophenol catalyzed by CoO, CoS and CoO/CoS nanoparticles, Journal of the Iranian Chemical Society, 11 (2014) 271-277.
DOI: 10.1007/s13738-013-0297-2
Google Scholar
[35]
N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (2007).
DOI: 10.1016/j.seppur.2007.07.016
Google Scholar
[36]
N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 162 (2004) 317-322.
DOI: 10.1016/s1010-6030(03)00378-2
Google Scholar
[37]
M. Mehrvar, W.A. Anderson, M. Moo-Young, P.M. Reilly, Non-linear parameter estimation for a dynamic model in photocatalytic reaction engineering, Chem. Eng. Sci., 55 (2000) 4885-4891.
DOI: 10.1016/s0009-2509(00)00114-7
Google Scholar