Investigation of Phosphorus In-Diffusion and Strain in GaAsP/GaAs Using High-Resolution Transmission Electron Microscopy

Article Preview

Abstract:

We report our experiments based on the interfaces of a 5-period superlattice, containing GaAsP(3Å)/GaAs (190Å) heterostructures grown by molecular beam epitaxy (MBE). The atomic arrangement at the interfaces of GaAsP/GaAs is investigated using high resolution transmission electron microscopy (HRTEM). Our results indicate that the superlattice was grown coherently with strained layers. We propose that the atomic arrangement at the interface is GaP, assuming that phosphorus incorporation occurs primarily via substitution due to desorption of arsenic at the surface for substrate temperatures above 500°C. The incorporation of phosphorus has been investigated using fast Fourier transform (FFT) patterns and shows a form of strain distribution near the heterointerface. The FFT patterns of the superlattice reveal that strain distributes mostly near the interface and gradually decreases along the direction of growth. Phosphorus diffused into a GaAs layer changes the lattice constant in the growth direction, which reduces strain in the superlattice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

April 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Diaz, L. Wang, D. Li, X. Zhao, B. Conrad, A. Soeriyadi, A. Gerger, A. Lochtefeld, C. Ebert, R. Opila, I. Perez-Wurfl, A. Bernett, Tandem GaAsP/SiGe on Si solar cells, Sol. Energy Mater. Sol. Cells, 143 (2015) 113-119.

DOI: 10.1016/j.solmat.2015.06.033

Google Scholar

[2] T. Takamoto, E. Ikeda, H. Kurita, Over 30% efficient InGaP/GaAs tandem solar cells, Appl. Phys. Lett. 70 (1997) 381-383.

DOI: 10.1063/1.118419

Google Scholar

[3] T. Sato and M. Imai, Effects of nitrogen on GaAsP light-emitting diodes, J. Appl. Phys. 91 (2002) 6266-6272.

DOI: 10.1063/1.1469664

Google Scholar

[4] F. Agahi, A. Baliga, K. M. Lau, N. G. Anderson, Tensile-strained barrier GaAsP/GaAs single quantum-well lasers, Appl. Phys. Lett. 68 (1996) 3778-3780.

DOI: 10.1063/1.116614

Google Scholar

[5] T. D. Brown and G. S. May, Hybrid neural network modeling of anion exchange at the interfaces of mixed anion III-V heterostructures grown by molecular beam epitaxy, IEEE Trans. Semiconductor Manufacturing, 18 (2005) 614-621.

DOI: 10.1109/tsm.2005.858506

Google Scholar

[6] A. V. Boitsov, N. A. Bert, Yu. G. Musikhin, V. V. Chaldyshev, M. A. Yagovkina, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, Effect of isovalent doping with phosphorus on the cluster formation in gallium arsenide grown by molecular-beam epitaxy at a relatively low temperature, Semiconductors, 40 (2006) 758-762.

DOI: 10.1134/s1063782606070025

Google Scholar

[7] R. F. Scholz and U. Gosele, Phosphorus and antimony in GaAs as tracers for self-diffusion on the arsenic sublattice, J.Appl.Phys. 87 (2000) 704-710.

DOI: 10.1063/1.371929

Google Scholar

[8] T. Soga, J. Inoue, T. Jimbo, M. Umeno, OBSERVATION OF LATTICE-RELAXATION AT THE GAASP/GAAS INTERFACE BEYOND THE CRITICAL THICKNESS BY TRANSMISSION ELECTRON-MICROSCOPY, J. Appl. Phys. 75 (1994) 4510-4514.

DOI: 10.1063/1.355942

Google Scholar

[9] X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, W. Walukiewicz, NATIVE POINT-DEFECTS IN LOW-TEMPERATURE-GROWN GAAS, Appl. Phys. Lett. 67 (1995) 279-281.

DOI: 10.1063/1.114782

Google Scholar

[10] E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J.Schneider, T. Wosinski, IDENTIFICATION OF ASGA ANTISITES IN PLASTICALLY DEFORMED GAAS, J. Appl. Phys. 53 (1982) 6140-6143.

DOI: 10.1063/1.331577

Google Scholar

[11] M. Losurdo, P. Capezzuto, G. Bruno, A. S. Brown, T. Brown, G. May, Fundamental reactions controlling anion exchange during mixed anion heterojunction formation: Chemistry of As-for-Sb and Sb-for-As exchange reactions, J. Appl. Phys. 100 (2006) 013531.

DOI: 10.1063/1.2216049

Google Scholar

[12] J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, I.K. Robinson, GEXSI1-X/SI STRAINED- LAYER SUPERLATTICE GROWN BY MOLECULAR-BEAM EPITAXY, J. Vac. Sci. Technol. A, 2 (1984) 436-440.

DOI: 10.1116/1.572361

Google Scholar

[13] D. Shindo, Y. Ikematsh, S. H. Lim, I. Yonenaga, Digital electron microscopy on advanced materials, Materials Characterization, 44 (2000) 375-384.

DOI: 10.1016/s1044-5803(00)00073-5

Google Scholar

[14] A. Vila, A. Cornet, J. R. Morante, P. Ruterana, R. Bonnet, Structure of 60 degrees dislocations at the GaAs/Si interface, J. Appl. Phys. 79 (1996) 676-681.

DOI: 10.1063/1.360812

Google Scholar

[15] Y. Q. Wang, Z. L. Wang, T. Brown, A. Brown, G. May, Configurations of misfit dislocations at interfaces of lattice-matched Ga0.5In0.5P/GaAs heterostructures, Appl. Phys. Lett. 77 (2000) 223-225.

DOI: 10.1063/1.126931

Google Scholar

[16] B. C. DE Cooman and C.B. Carter, THE FORMATION OF FAULTED DIPOLES IN PLASTICALLY DEFORMED GAAS, Phys. Status Solidi A, 112 (1989) 41-54.

DOI: 10.1002/pssa.2211120105

Google Scholar

[17] B.C. De Cooman and C.B. Carter, FAULTED DIPOLES IN GAAS, Appl. Phys. Lett. 50 (1987) 40-42.

DOI: 10.1063/1.98120

Google Scholar

[18] M. Sennour, S. Lartigue-Korinek, Y. Champion, M.J. Hytch, Local strain analysis in twin boundaries in ultrafine grained copper, J. Mater. Sci. 43 (2008) 3806–3811.

DOI: 10.1007/s10853-007-2303-5

Google Scholar

[19] A. Ourmazd, D. W. Taylor, M. Bode, Y. Kim, Quantifying the Information- Content of Lattice Images, Science 246 (1989) 1571-1577.

DOI: 10.1126/science.246.4937.1571

Google Scholar

[20] C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim, A. Ourmazd, AN APPROACH TO QUANTITATIVE HIGH-RESOLUTION TRANSMISSION ELECTRON- MICROSCOPY OF CRYSTALLINE MATERIALS, Ultramicroscopy 58 (1995) 131-155.

DOI: 10.1016/0304-3991(94)00202-x

Google Scholar

[21] A. Rosenauer, T. Remmele, D. Gerthsen, K. Tillmann, A. Forster, Atomic scale strain measurements by the digital analysis of transmission electron microscopic lattice images, Optik 105 (1997) 99-107.

Google Scholar

[22] A. Rosenauer, U. Fischer, D. Gerthsen, F. Forster, Composition evaluation of InxGa1-xAs Stranski-Krastanow-island structures by strain state analysis, Appl. Phys. Lett. 71 (1997) 3868-3870.

DOI: 10.1063/1.120528

Google Scholar

[23] M. D. Robertson, J. E. Currie, J. M. Corbett, J. B. Webb, DETERMINATION OF ELASTIC STRAINS IN EPITAXIAL LAYERS BY HREM, Ultramicroscopy, 58 (1995) 175-184.

DOI: 10.1016/0304-3991(94)00200-7

Google Scholar

[24] Electron Microscopy Software, Jems – java version, Copyright © P. Stadelmann 1999-2003, CIME-EPFL Switzerland.

Google Scholar

[25] H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, T. Kosugoh, S. Nakamura, T. Nakanishi, S. Okumi, T. Saka, M. Tawada, M. Tsubata, STRAIN DEPENDENCE OF SPIN POLARIZATION OF PHOTOELECTRONS FROM A THIN GAAS LAYER, Phys. Lett. A, 167 (1992) 415-420.

DOI: 10.1016/0375-9601(92)90283-r

Google Scholar

[26] P. Specht, R. C. Lutz, R. Zhao, E. R. Weber, W.K. Liu, K. Bacher, F. J. Towner, T. R. Stewart, M. Luysberg, Improvement of molecular beam epitaxy-grown low-temperature GaAs through p doping with Be and C, J. Vac. Sci. Technol. B 17 (1999) 1200-1204.

DOI: 10.1116/1.590747

Google Scholar

[27] X. Xu, S. P. Beckman, P. Specht, E. R. Weber, D. C. Chrzan, R. P. Erni, I. Arslan, N. Browning, A. Bleloch, C. Kisielowski, Distortion and segregation in a dislocation core region at atomic resolution, Phys. Rev. Lett. 95 (2005) 145501.

DOI: 10.1103/physrevlett.95.145501

Google Scholar

[28] Image Processing and Analysis in Java, http://rsbweb.nih.gov/ij/ (Last accessed Oct. 2018).

Google Scholar

[29] Delores M. Etter and David C. Kuncicky, Introduction to Matlab 7, Pearson Prentice Hall, New Jersey, 2005, p.234.

Google Scholar