[1]
Shen, L., Bao, N., Prevelige, P.E., Gupta, A. (2010) Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein. Journal of the American Chemical Society 132, 17354–17357.
DOI: 10.1021/ja107080b
Google Scholar
[2]
Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., Duguet, E. (2005) Design and synthesis of Janus micro- and nanoparticles. Journal of Material Chemistry 15, 3745–3760.
DOI: 10.1039/b505099e
Google Scholar
[3]
Du, J., O'Reilly, R.K. (2011) Anisotropic particles with patchy, multicompartment and Janus architectures: Preparation and application. Chemical Society Reviews 40, 2402–2416.
DOI: 10.1039/c0cs00216j
Google Scholar
[4]
Mackness, M.I., Mackness, B., Durrington, P.N., Connelly, P.W., Hegele, R.A. (1996) Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Current Opinion in Lipidology 7, 69–76.
DOI: 10.1097/00041433-199604000-00004
Google Scholar
[5]
Mazur, A. (1946) An enzyme in animal tissues capable of hydrolysing the phosphorus-fluorine bond of alkyl fluorophosphates. Jornal of Biological Chemistry 164, 271–289.
DOI: 10.1016/s0021-9258(18)43068-2
Google Scholar
[6]
Aggarwal, G., Prajapati, R., Tripathy, R.K., Bajaj, P., Iyengar, A.R.S., Sangamwar, A.T., Pande A.H. (2016) Toward understanding the catalytic mechanism of human paraoxonase 1: Site-specific mutagenesis at position 192. PLoS One.
DOI: 10.1371/journal.pone.0147999
Google Scholar
[7]
Billecke, S., Draganov, D., Counsell, R., Stetson, P., Watson, C., Hsu, C., La Du, B.N. (2000) Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metabolism & Disposition 28, 1335–1342.
Google Scholar
[8]
Khersonsky, O., Tawfik, D.S. (2005) Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry 44, 6371.
DOI: 10.1021/bi047440d
Google Scholar
[9]
Costa, L.G., Cole, T.B., Jarvik, G.P., Furlong, C.E. (2003) Functional Genomics of the Paraoxonase (PON1) Polymorphisms: Effects on Pesticide Sensitivity, Cardiovascular Disease, and Drug Metabolism Annual Review of Medicine 54, 371.
DOI: 10.1146/annurev.med.54.101601.152421
Google Scholar
[10]
Précourt, L.P., Amre, D., Denis, M.C., Lavoie, J.C., Delvin, E., Seidman, E., Levy, E. (2011) The three-gene paraoxonase family: Physiologic roles, actions and regulation. Atherosclerosis 214:20–36.
DOI: 10.1016/j.atherosclerosis.2010.08.076
Google Scholar
[11]
Nguyen, S.D., Sok, D.E. (2003) Oxidative inactivation of paraoxonase1, an antioxidant protein and its effect on antioxidant action. Free Radical Research 37, 1319–1330.
DOI: 10.1080/5760310001621351-1
Google Scholar
[12]
Yan, M., Ge, J., Liu, Z., Ouyang, P. (2006) Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. Journal of the American Chemical Society 128:11008–11009.
DOI: 10.1021/ja064126t
Google Scholar
[13]
Soleimani, S.S., Nadaroglu, H., Kesmen, Z. (2017) Lactobacillus brevis lipase: Purification, immobilization onto magnetic florosil NPs, characterization and application as a detergent additive. Tenside Surfactants Detergents 54: 194-205.
DOI: 10.3139/113.110495
Google Scholar
[14]
Karaduman, I., Güngör, A.A., Nadaroğlu, H., Altundaş, A., Acar, S. (2017) Green synthesis of γ-Fe2O3 nanoparticles for methane gas sensing. Journal of Materials Science: Materials in Electronics 28:16094-105.
DOI: 10.1007/s10854-017-7510-5
Google Scholar
[15]
Lin, J., Qu, W., Zhang, S. (2007) Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Analitical Biochemistry 360, 288–293.
DOI: 10.1016/j.ab.2006.10.030
Google Scholar
[16]
Ding, H., Wen, L., Chen, J. (2004) Porous silica nano-tube as host for enzyme immobilization. China Particuology 2, 270–273.
DOI: 10.1016/s1672-2515(07)60073-6
Google Scholar
[17]
Onem, H., Nadaroglu, H. (2018) Immobilization of Purified Phytase Enzyme from Tirmit (Lactarius volemus) on Coated Chitosan with Iron Nanoparticles and Investigation of Its Usability in Cereal Industry. Iranian Journal of Science and Technology, Transactions A: Science 42, 1063-1075.
DOI: 10.1007/s40995-016-0111-y
Google Scholar
[18]
Onem, H., Cicek, S., Nadaroglu, H. (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles. CYTA - J Food 14, 74-83.
DOI: 10.1080/19476337.2015.1045942
Google Scholar
[19]
Boyer, C., Bulmus, V., Liu, J., Davis T. P., Stenzel, M.H., Barner-Kowollik, C. (2007) Well-defined protein-polymer conjugates via in situ RAFT polymerization. Journal of the American Chemical Society 129:7145–7154.
DOI: 10.1021/ja070956a
Google Scholar
[20]
Wang, R., Zhang, Y., Lu, D., Ge, J., Liu, Z., Zare, R.N. (2013) Functional protein-organic/inorganic hybrid nanomaterials. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, 5, 320-8.
DOI: 10.1002/wnan.1210
Google Scholar
[21]
Ansari, S.A., Husain, Q. (2012) Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances 30, 512–523.
DOI: 10.1016/j.biotechadv.2011.09.005
Google Scholar
[22]
Lee SW, Cheon SA, Kim M Il, Park TJ (2015) Organic-inorganic hybrid nanoflowers: Types, characteristics, and future prospects. Journal of Nanobiotechnology 13, 54.
DOI: 10.1186/s12951-015-0118-0
Google Scholar
[23]
Yu, Y., Fei, X., Tian, J., Xu L., Wang, X., Wang, Y., (2015) Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids Surfaces B Biointerfaces 130:299–304.
DOI: 10.1016/j.colsurfb.2015.04.033
Google Scholar
[24]
Tsay, H.J., Wang, Y.H., Chen, W.L., Huang, M.Y., Chen, Y.H. (2007) Treatment with sodium benzoate leads to malformation of zebrafish larvae. Neurotoxicol Teratol 29:562–569.
DOI: 10.1016/j.ntt.2007.05.001
Google Scholar
[25]
Baran, A., Köktürk, M., Atamanalp, M., Ceyhun, S.B. (2018) Determination of developmental toxicity of zebrafish exposed to propyl gallate dosed lower than ADI (Acceptable Daily Intake). Regul Toxicol Pharmacol 94:16–21.
DOI: 10.1016/j.yrtph.2017.12.027
Google Scholar
[26]
Celebi N, Nadaroglu H, Kalkan E (2012) Removal of as (III) from wastewater using Erzurum clay soil. Fresenius Environmental Bulletin 21, (7) 1982-1991.
Google Scholar
[27]
Demir, N., Nadaroglu, H., Ozkan, A., Tasgin, E., Isik, C., Demir, Y. (2014) Purification of paraoxonase enzyme from the sera of patients with Behcet's disease and analyzing the effects of the drugs containing imuran (azathioprine), prednisolone (methylprednisolone) and colchium (colchicine). Drug Metab Lett 8, 67-75.
DOI: 10.2174/1872312808666140514113838
Google Scholar
[28]
Demir N, Nadaroǧlu H, Demir Y (2008) Purification of human serum paraoxonase and effect of acetylsalicylic acid on paraoxonase activity. Pharmaceutical Biology 46: 393-399.
DOI: 10.1080/13880200802055834
Google Scholar
[29]
Nadaroǧlu, H., Demir, N. (2009) In vivo effects of chlorpyrifos and parathion-methyl on some oxidative enzyme activities in chickpea, bean, wheat, nettle and parsley leaves. Fresenius Environmental Bulletin 18, 647-652.
Google Scholar
[30]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
DOI: 10.1038/227680a0
Google Scholar
[31]
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254.
DOI: 10.1016/0003-2697(76)90527-3
Google Scholar
[32]
Ceron, J.J., Tecles, F., Tvarijonaviciute, A. (2014) Serum paraoxonase 1 (PON1) measurement: An update. BMC Veterinary Research 10, 1–11.
DOI: 10.1186/1746-6148-10-74
Google Scholar
[33]
Charlton-Menys, V., Liu, Y., Durrington, P.N. (2006) Semiautomated method for determination of serum paraoxonase activity using paraoxon as substrate. Clinical Chemistry 52:453–457.
DOI: 10.1373/clinchem.2005.063412
Google Scholar
[34]
Kharisov, B. (2008) A Review for Synthesis of Nanoflowers. Recent Pat Nanotechnol 2:190–200.
Google Scholar
[35]
Ge, J., Lei, J., Zare, R.N. (2012) Protein-inorganic hybrid nanoflowers. Natural Nanotechnology 7:428–432.
DOI: 10.1038/nnano.2012.80
Google Scholar
[36]
Shi X, Du Y, Lam PKS, et al (2008) Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicology and Applied Pharmacology 230, 23-32.
DOI: 10.1016/j.taap.2008.01.043
Google Scholar
[37]
Sulukan E, Köktürk M, Ceylan H, Beydemir, Ş., Işık, M., Atamanalp, M., Ceyhun, S.B. (2017) An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio). Chemosphere 180, 77-85.
DOI: 10.1016/j.chemosphere.2017.04.018
Google Scholar
[38]
Demir, Y., Nadaroǧlu, H., Demir, N. (2004) Effects of omeprazole, famotidine, and ranitidine on the enzyme activities of carbonic anhydrase from bovine stomach in vitro and rat erythrocytes in vivo. Biological Pharmaceutical Bulletin 27, 1730-1734.
DOI: 10.1248/bpb.27.1730
Google Scholar
[39]
Yurttaş, L., Küçükoğlu, K., Nadaroğlu, H., Kaplancikli, Z.A. (2017) Synthesis and evaluation of novel 2-[(1,2,4-triazol-3-yl)thio]acetamide derivatives as potential serum paraoxonase-1 (PON1) activators. Marmara Pharmaceutical Journal 21, 967-977.
DOI: 10.12991/mpj.2017.19
Google Scholar
[40]
Antkiewicz, D.S., Burns, C.G., Carney, S.A., Peterson, R.E., Heideman, W. (2005) Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicological Science 84, 368-377.
DOI: 10.1093/toxsci/kfi073
Google Scholar
[41]
Zhu, X., Wang, J., Zhang, X., Chang, Y., Chen, Y. (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish ( Danio rerio ). Nanotechnology 20, 195103.
DOI: 10.1088/0957-4484/20/19/195103
Google Scholar
[42]
Çomakli, S., Köktürk, M., Topal, A., Özkaraca, M., Ceyhun, S.B., (2018) Immunofluorescence/fluorescence assessment of brain-derived neurotrophic factor, c-Fos activation, and apoptosis in the brain of zebrafish (Danio rerio) larvae exposed to glufosinate. Neurotoxicology 69:60–67.
DOI: 10.1016/j.neuro.2018.09.003
Google Scholar
[43]
Westerfield, M. (2008) The Zebrafish book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th Edition.
Google Scholar
[44]
Hermsen, S.A.B., van den Brandhof, E.J., van der Ven, L.T.M., Piersma, A.H. (2011) Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. 25(3), 745-753 Toxicology in Vitro.
DOI: 10.1016/j.tiv.2011.01.005
Google Scholar