[1]
B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W.W. Xu, B. Lu, and Y. Jiang, Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors, J. Mater. Chem. A 1 (2013), 367-373.
DOI: 10.1039/c2ta00084a
Google Scholar
[2]
R. S. Kate, S. A. Khalate, and R. J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, J. Alloy. Compd. 734 (2018), 89-111.
DOI: 10.1016/j.jallcom.2017.10.262
Google Scholar
[3]
H. Nan, W. Ma, Q. Hu, and X. Zhang, Copper oxide nanofilm on 3D copper foam as a novel electrode material for supercapacitors, Appl. Phys. A 119(2015), 1451-1457.
DOI: 10.1007/s00339-015-9119-y
Google Scholar
[4]
K. Balakrishnan, M. Kumar, and A. Subramania, Synthesis of polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors, Adv. Mater. Res. 938(2014), 151-157.
DOI: 10.4028/www.scientific.net/amr.938.151
Google Scholar
[5]
S. Arunachalam, B. Kirubasankar, E. R. Nagarajan, D. Vellasamy, and S. Angaiah, A Facile Chemical Precipitation Method for the Synthesis of Nd(OH)3 and La(OH)3 Nanopowders and their Supercapacitor Performances,ChemistrySelect 3(2018),12719-12724.
DOI: 10.1002/slct.201803151
Google Scholar
[6]
K. Singh, B. Kirubasankar, and S. Angaiah, Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0≤× ≤ 0.5) nanopowders for sodium-ion capacitors, Ionics 23(2017),731-739.
DOI: 10.1007/s11581-016-1821-z
Google Scholar
[7]
B.Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J.X. Zhang, T. X. Li, N. Wang, Z. H. Guo, and S. Angaiah ,In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors,Nanoscale.10(2018),20414-20425.
DOI: 10.1039/c8nr06345a
Google Scholar
[8]
B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, and S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications, Chem.Eng.J.355(2019) ,881-890.
DOI: 10.1016/j.cej.2018.08.185
Google Scholar
[9]
A. Subasri, K. Balakrishnan, E. R. Nagarajan, V. Devadoss, and A. Subramania, Development of 2D La(OH)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors, Electrochim. Acta 281(2018),329-337.
DOI: 10.1016/j.electacta.2018.05.142
Google Scholar
[10]
J. Ye, Z. Li, Z. Dai, Z. Zhang, M. Guo, and X. Wang, Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes, J. Electron. Mater. 45(2016), 4237-4245.
DOI: 10.1007/s11664-016-4587-1
Google Scholar
[11]
S. E. Moosavifard, M. F. El-Kady, M.S. Rahmanifar, R. B. Kaner, and M. F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high performance asymmetric supercapacitors, ACS Appl. Mater. Inter. 7(2015), 4581-4860.
DOI: 10.1021/am508816t
Google Scholar
[12]
G. Wang, J. Huang, S. Chen, Y. Gao, and D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam, J. Power Sources 196(2011), 5756-5760.
DOI: 10.1016/j.jpowsour.2011.02.049
Google Scholar
[13]
D.P. Dubal, G.S. Gund, R. Holze, and C.D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors, J. Power Sources 242(2013), 687-698.
DOI: 10.1016/j.jpowsour.2013.05.013
Google Scholar
[14]
Y. Zhu, and F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114(2014), 6462-6555.
DOI: 10.1021/cr400366s
Google Scholar
[15]
D.P. Volanti, M. O. Orlandi, J. Andres, and E. Longo, Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly, CrystEngComm 12 (2010), 1696-1699.
DOI: 10.1039/b922978g
Google Scholar
[16]
T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii, XPS study of the Cu@Cu2O core-shell nanoparticles, Appl. Surf. Sci. 255 (2008), 2730-2734.
DOI: 10.1016/j.apsusc.2008.08.110
Google Scholar
[17]
W. Xu, S. Dai, G. Liu, Y. Xi, C. Hu, and X. Wang, CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors, Electrochim. Acta 203 (2016), 1-8.
DOI: 10.1016/j.electacta.2016.03.170
Google Scholar
[18]
M. Deng, C. Wang, P. Ho, C. Lin, J. Chen, and K. Lu, Facile electrochemical synthesis of 3D nano architectured CuO electrodes for high performance supercapacitors, J. Mater. Chem. A 2 (2014), 12857-12865.
DOI: 10.1039/c4ta02444c
Google Scholar
[19]
Z. Endut, M. Hamdi, W. J. Basirun, Pseudocapacitive performance of vertical copper oxide nanoflakes, Thin Solid Film 528 (2013), 213-216.
DOI: 10.1016/j.tsf.2012.09.084
Google Scholar
[20]
J. Lu, W. Xu, S. Li, W. Liu, M. S. Javed, G. Liu, and C. Hu, Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor, J. Mater. Sci. 53 (2018) 739-748.
DOI: 10.1007/s10853-017-1493-8
Google Scholar
[21]
S. K. Meher, and G. R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543-25556.
DOI: 10.1021/jp209165v
Google Scholar
[22]
S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, and S. Angaiah, Facile synthesis of electrostatically anchored Nd(OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors, New J.Chem. 42(2018), 2923-2932.
DOI: 10.1039/c7nj04335j
Google Scholar
[23]
B. Kirubasankar, V. Murugadoss, and S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors, RSC Adv. 7(2017), 5853-5862.
DOI: 10.1039/c6ra25078e
Google Scholar
[24]
Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, and D. Cao, Nanostructured CuO directly grown on copper foam and their supercapacitance performance, Electrochim. Acta 85 (2012), 393-398.
DOI: 10.1016/j.electacta.2012.07.127
Google Scholar
[25]
X. Lei, Z. Shi, X. Wang, T. Wang, J. Ai, P. Shi, R. Xue, H. Guo, and W. Yang, Solvothermal synthesis of pompon-like nickel-cobalt hydroxide/graphene oxide composite for high-performance supercapacitor application, Colloid. Surface. A 549 (2018), 76-85.
DOI: 10.1016/j.colsurfa.2018.04.011
Google Scholar
[26]
W. Xiao, W. Zhou, H. Yu, Y. Pu, Y. Zhang, and C. Hu, Template synthesis of hierarchical mesoporous δ-MnO2 hollow microspheres as electrode material for high-performance symmetric supercapacitor, Electrochim. Acta 264 (2018), 1-11.
DOI: 10.1016/j.electacta.2018.01.070
Google Scholar
[27]
B. Kirubasankar, S. Vijayan, and S. Angaiah, Sonochemical synthesis of a 2D–2D MoSe2/ graphene nanohybrid electrode material for asymmetric supercapacitors, Sustain. Energ. Fuels 3(2019),467-477.
DOI: 10.1039/c8se00446c
Google Scholar
[28]
S. Vijayan, B. Kirubasankar, P. Pazhamalai, A. K. Solarajan, and S.Angaiah, Electrospun Nd3+-Doped LiMn2O4 Nanofibers as High-Performance Cathode Material for Li-Ion Capacitors, ChemElectroChem 4(2017),2059-2067.
DOI: 10.1002/celc.201700161
Google Scholar
[29]
M. Kumar, A. Subramania, and K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors, Electrochim. Acta 149(2014),152-158.
DOI: 10.1016/j.electacta.2014.10.021
Google Scholar