Electrochemical Capacitive Properties of CuO Nanorods Prepared by a Facile Microwave-Assisted Synthesis Method

Article Preview

Abstract:

CuO nanorods were fabricated by a facile microwave-assisted synthesis method and applied to pseudo-capacitor. The CuO nanorods were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The capacitive behavior of nanorods was investigated by cyclic voltammetry and galvanostatic charge–discharge measurements. Electrochemical experiments reveal that CuO nanorods demonstrate better capacitance performance than granular CuOs prepared by chemical precipitation method. The CuO nanorods have a high specific capacitance of 317 F/g at a current density of 1 A/g and a fairly good cyclic stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-30

Citation:

Online since:

April 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W.W. Xu, B. Lu, and Y. Jiang, Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors, J. Mater. Chem. A 1 (2013), 367-373.

DOI: 10.1039/c2ta00084a

Google Scholar

[2] R. S. Kate, S. A. Khalate, and R. J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, J. Alloy. Compd. 734 (2018), 89-111.

DOI: 10.1016/j.jallcom.2017.10.262

Google Scholar

[3] H. Nan, W. Ma, Q. Hu, and X. Zhang, Copper oxide nanofilm on 3D copper foam as a novel electrode material for supercapacitors, Appl. Phys. A 119(2015), 1451-1457.

DOI: 10.1007/s00339-015-9119-y

Google Scholar

[4] K. Balakrishnan, M. Kumar, and A. Subramania, Synthesis of polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors, Adv. Mater. Res. 938(2014), 151-157.

DOI: 10.4028/www.scientific.net/amr.938.151

Google Scholar

[5] S. Arunachalam, B. Kirubasankar, E. R. Nagarajan, D. Vellasamy, and S. Angaiah, A Facile Chemical Precipitation Method for the Synthesis of Nd(OH)3 and La(OH)3 Nanopowders and their Supercapacitor Performances,ChemistrySelect 3(2018),12719-12724.

DOI: 10.1002/slct.201803151

Google Scholar

[6] K. Singh, B. Kirubasankar, and S. Angaiah, Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0≤× ≤ 0.5) nanopowders for sodium-ion capacitors, Ionics 23(2017),731-739.

DOI: 10.1007/s11581-016-1821-z

Google Scholar

[7] B.Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J.X. Zhang, T. X. Li, N. Wang, Z. H. Guo, and S. Angaiah ,In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors,Nanoscale.10(2018),20414-20425.

DOI: 10.1039/c8nr06345a

Google Scholar

[8] B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, and S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications, Chem.Eng.J.355(2019) ,881-890.

DOI: 10.1016/j.cej.2018.08.185

Google Scholar

[9] A. Subasri, K. Balakrishnan, E. R. Nagarajan, V. Devadoss, and A. Subramania, Development of 2D La(OH)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors, Electrochim. Acta 281(2018),329-337.

DOI: 10.1016/j.electacta.2018.05.142

Google Scholar

[10] J. Ye, Z. Li, Z. Dai, Z. Zhang, M. Guo, and X. Wang, Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes, J. Electron. Mater. 45(2016), 4237-4245.

DOI: 10.1007/s11664-016-4587-1

Google Scholar

[11] S. E. Moosavifard, M. F. El-Kady, M.S. Rahmanifar, R. B. Kaner, and M. F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high performance asymmetric supercapacitors, ACS Appl. Mater. Inter. 7(2015), 4581-4860.

DOI: 10.1021/am508816t

Google Scholar

[12] G. Wang, J. Huang, S. Chen, Y. Gao, and D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam, J. Power Sources 196(2011), 5756-5760.

DOI: 10.1016/j.jpowsour.2011.02.049

Google Scholar

[13] D.P. Dubal, G.S. Gund, R. Holze, and C.D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors, J. Power Sources 242(2013), 687-698.

DOI: 10.1016/j.jpowsour.2013.05.013

Google Scholar

[14] Y. Zhu, and F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114(2014), 6462-6555.

DOI: 10.1021/cr400366s

Google Scholar

[15] D.P. Volanti, M. O. Orlandi, J. Andres, and E. Longo, Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly, CrystEngComm 12 (2010), 1696-1699.

DOI: 10.1039/b922978g

Google Scholar

[16] T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii, XPS study of the Cu@Cu2O core-shell nanoparticles, Appl. Surf. Sci. 255 (2008), 2730-2734.

DOI: 10.1016/j.apsusc.2008.08.110

Google Scholar

[17] W. Xu, S. Dai, G. Liu, Y. Xi, C. Hu, and X. Wang, CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors, Electrochim. Acta 203 (2016), 1-8.

DOI: 10.1016/j.electacta.2016.03.170

Google Scholar

[18] M. Deng, C. Wang, P. Ho, C. Lin, J. Chen, and K. Lu, Facile electrochemical synthesis of 3D nano architectured CuO electrodes for high performance supercapacitors, J. Mater. Chem. A 2 (2014), 12857-12865.

DOI: 10.1039/c4ta02444c

Google Scholar

[19] Z. Endut, M. Hamdi, W. J. Basirun, Pseudocapacitive performance of vertical copper oxide nanoflakes, Thin Solid Film 528 (2013), 213-216.

DOI: 10.1016/j.tsf.2012.09.084

Google Scholar

[20] J. Lu, W. Xu, S. Li, W. Liu, M. S. Javed, G. Liu, and C. Hu, Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor, J. Mater. Sci. 53 (2018) 739-748.

DOI: 10.1007/s10853-017-1493-8

Google Scholar

[21] S. K. Meher, and G. R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543-25556.

DOI: 10.1021/jp209165v

Google Scholar

[22] S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, and S. Angaiah, Facile synthesis of electrostatically anchored Nd(OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors, New J.Chem. 42(2018), 2923-2932.

DOI: 10.1039/c7nj04335j

Google Scholar

[23] B. Kirubasankar, V. Murugadoss, and S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors, RSC Adv. 7(2017), 5853-5862.

DOI: 10.1039/c6ra25078e

Google Scholar

[24] Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, and D. Cao, Nanostructured CuO directly grown on copper foam and their supercapacitance performance, Electrochim. Acta 85 (2012), 393-398.

DOI: 10.1016/j.electacta.2012.07.127

Google Scholar

[25] X. Lei, Z. Shi, X. Wang, T. Wang, J. Ai, P. Shi, R. Xue, H. Guo, and W. Yang, Solvothermal synthesis of pompon-like nickel-cobalt hydroxide/graphene oxide composite for high-performance supercapacitor application, Colloid. Surface. A 549 (2018), 76-85.

DOI: 10.1016/j.colsurfa.2018.04.011

Google Scholar

[26] W. Xiao, W. Zhou, H. Yu, Y. Pu, Y. Zhang, and C. Hu, Template synthesis of hierarchical mesoporous δ-MnO2 hollow microspheres as electrode material for high-performance symmetric supercapacitor, Electrochim. Acta 264 (2018), 1-11.

DOI: 10.1016/j.electacta.2018.01.070

Google Scholar

[27] B. Kirubasankar, S. Vijayan, and S. Angaiah, Sonochemical synthesis of a 2D–2D MoSe2/ graphene nanohybrid electrode material for asymmetric supercapacitors, Sustain. Energ. Fuels 3(2019),467-477.

DOI: 10.1039/c8se00446c

Google Scholar

[28] S. Vijayan, B. Kirubasankar, P. Pazhamalai, A. K. Solarajan, and S.Angaiah, Electrospun Nd3+-Doped LiMn2O4 Nanofibers as High-Performance Cathode Material for Li-Ion Capacitors, ChemElectroChem 4(2017),2059-2067.

DOI: 10.1002/celc.201700161

Google Scholar

[29] M. Kumar, A. Subramania, and K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors, Electrochim. Acta 149(2014),152-158.

DOI: 10.1016/j.electacta.2014.10.021

Google Scholar