[1]
Kranti, A., Haldar, S., and Gupta, R. S. (2001). An accurate 2D analytical model for short channel thin film fully depleted cylindrical/surrounding gate (CGT/SGT) MOSFET. Microelectronics Journal, 32(4), 305-313. https://doi.org/10.1016/S0026-2692(01)00008-8.
DOI: 10.1016/s0026-2692(01)00008-8
Google Scholar
[2]
Kranti, A., Haldar, S., and Gupta, R. S. (2001). Analytical model for threshold voltage and I–V characteristics of fully depleted short channel cylindrical/surrounding gate MOSFET. Microelectronic Engineering, 56(3-4), 241-259. https://doi.org/10.1016/S0167-317(00) 00419-6.
DOI: 10.1016/s0167-9317(00)00419-6
Google Scholar
[3]
Dubey, S., Santra, A., Saramekala, G., Kumar, M., and Tiwari, P. K. (2013). An analytical threshold voltage model for triple-material cylindrical gate-all-around (TM-CGAA) MOSFETs. IEEE Transactions on Nanotechnology, 12(5),766-774. https://doi.org/10.1109/TNANO.2013.2273805.
DOI: 10.1109/tnano.2013.2273805
Google Scholar
[4]
Oh, S. H., Monroe, D., and Hergenrother, J. M. (2000). Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE electron device letters, 21(9), 445-447.
DOI: 10.1109/55.863106
Google Scholar
[5]
Gupta, S. K., and Baishya, S. (2012). Modelling and simulation of triple metal cylindrical surround gate MOSFETs for reduced short channel effects. International Journal of Soft Computing and Engineering (IJSCE), 2(2), 214-221.
Google Scholar
[6]
Ghosh, P., Haldar, S., Gupta, R. S., and Gupta, M. (2012). Analytical modelling and simulation for dual metal gate stack architecture (DMGSA) cylindrical/surrounded gate MOSFET. JSTS: Journal of Semiconductor Technology and Science, 12(4), 458-466.
DOI: 10.5573/jsts.2012.12.4.458
Google Scholar
[7]
Pratap, Y., Ghosh, P., Haldar, S., Gupta, R. S., and Gupta, M. (2014). An analytical subthreshold current modelling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering. Microelectronics Journal, 45(4), 408-415. https://doi.org/10.1016/j.mejo.2014.01.015.
DOI: 10.1016/j.mejo.2014.01.015
Google Scholar
[8]
Tiwari, P. K., Dubey, S., Singh, M., and Jit, S. (2010). A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 108(7), 074508. https://doi.org/10.1063/1.3488605.
DOI: 10.1063/1.3488605
Google Scholar
[9]
Kumar, M.J., Orouji, A.A., and Dhakad, H. (2006). New dual-material SG nanoscale MOSFET: analytical threshold-voltage model. IEEE transactions on Electron Devices, 53(4), 920-922.
DOI: 10.1109/ted.2006.870422
Google Scholar
[10]
Kane, E. O. (1961). Theory of tunneling. Journal of applied Physics, 32(1), 83-91. http://dx.doi.org/10.1063/1.1735965.
Google Scholar
[11]
TCAD Sentarus Device User Guide, Synopsys Inc.,Version D-2010.03.
Google Scholar
[12]
Vanitha, P., Samuel, T. A., and Nirmal, D. (2019). A new 2 D mathematical modelling of surrounding gate triple material tunnel FET using halo engineering for enhanced drain current. AEU-International Journal of Electronics and Communications, 99, 34-39. https://doi.org/10.1016/j.aeue.2018.11.013.
DOI: 10.1016/j.aeue.2018.11.013
Google Scholar
[13]
Arun Samuel, T. S., Balamurugan, N. B., Bhuvaneswari, S., Sharmila, D., and Padmapriya, K. (2014). Analytical modelling and simulation of single-gate SOI TFET for low-power applications. International Journal of Electronics, 101(6), 779-788. https://doi.org/10.1080/00207217.2013.796544.
DOI: 10.1080/00207217.2013.796544
Google Scholar
[14]
Verhulst, A. S., Sorée, B., Leonelli, D., Vandenberghe, W. G., and Groeseneken, G. (2010). Modelling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. Journal of Applied Physics, 107(2),024518. https://doi.org/10.1063/1.3277044.
DOI: 10.1063/1.3277044
Google Scholar
[15]
Saurabh, S., and Kumar, M. J. (2010). Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE transactions on Electron Devices, 58(2), 404-410. 10.1109/TED.2010.2093142.
DOI: 10.1109/ted.2010.2093142
Google Scholar
[16]
Ajayan, J., Nirmal, D., Prajoon, P., and Pravin, J. C. (2017). Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics Speed applications.AEU-International Journal of Electronics and Communications, 99, 130-38. https://doi.org/10.1016/j.aeue.2017.06.004.
DOI: 10.1016/j.aeue.2017.06.004
Google Scholar
[17]
Priya, G. L., and Balamurugan, N. B. (2019). New dual material double gate junctionless Tunnel FET:Subthreshold modelling and simulation AEU-International Journal of Elect -ronics and Communications. 99-130-138. https://doi.org/10.1016/j.aeue.2018.11.037.
DOI: 10.1016/j.aeue.2018.11.037
Google Scholar