[1]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc, 130 (2008) 3296-3297.
DOI: 10.1021/ja800073m.s002
Google Scholar
[2]
S. Subashi, K. Terakura and H. Hosono, A Possible Ground State and Its Electronic Structure of a Mother Material (LaOFeAs) of New Superconductors, J. Phys. Soc. Jpn, 77 (2008) 053709.
DOI: 10.1143/jpsj.77.053709
Google Scholar
[3]
K. Ishida, Y. Nakai and H. Hosono, To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report, J. Phys. Soc. Jpn, 78 (2009) 062001.
DOI: 10.1143/jpsj.78.062001
Google Scholar
[4]
F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan and M. K. Wu, Superconductivity in the PbO-type Structure α–FeSe, Proc. Natl. Acd. Sci, 105 (2008) 142627.
DOI: 10.1073/pnas.0807325105
Google Scholar
[5]
H. Okamoto, The Fe-Se (iron-selenium) System, J. Phase Equilibria, 12(3) (1991) 383-389.
Google Scholar
[6]
K. W. Yeh, H. C. Hsu, T. W. Huang, P. M. Wu, Y. L. Huang, T. K. Chen, J. Y. Luo, M. K. Wu, Se and Te Doping Study of the FeSe Superconductors, J. Phys. Soc. Jpn, 77 (2008) 19-22.
DOI: 10.1143/jpsjs.77sc.19
Google Scholar
[7]
B. K. Jain, A. K. Singh, K. J. Chandra, Phys. F. Met. Phys, 8 (1978) 2625 and references therein.
Google Scholar
[8]
K. Hirakawa, The Magnetic Properties of Iron Selenide Single Crystals, J. Phys. Soc. Jpn, 12 (1957) 929.
DOI: 10.1143/jpsj.12.929
Google Scholar
[9]
W. Schuster, H. Mi Mer, and K. L. Komarek, Transition Metal-chalcogen Systems VII: the iron-selenium phase diagram, Monatshefte für Chemie, 110 (1979) 1153-1170.
DOI: 10.1007/bf00910963
Google Scholar
[10]
Q. J. Feng, D. Z Shen, J. Y. Zhang, B. S. Li, B. H. Li, Y. M. Lu, X. W. Fan, H. W. Liang, Ferromagnetic FeSe: Structural, electrical, and magnetic properties, Appl. Phys. Lett, 88 (2006) 012505.
DOI: 10.1063/1.2159561
Google Scholar
[11]
X. J. Wu, Z. Z. Zhang, J. Y. Zhang, Z. G. Jia, Z. Shen, B. H. Lia, C. X. Shan, Y. M. Lua, Structural and Electrical Characterizations of Single Tetragonal FeSe on Si substrate, J. Cryst. Growth, 300 (2007) 483-485.
DOI: 10.1016/j.jcrysgro.2006.12.048
Google Scholar
[12]
J. Huang, L. Chen, J. Jian, K. Tyler, L. Li and H. Wang, Magnetic (CoFe2O4)0.1(CeO2)0.9 nanocomposite as effective pinning centers in FeSe0.1Te0.9 thin films," J. Phys., Condens. Matter, vol. 28 (2016) 025702.
DOI: 10.1088/0953-8984/28/2/025702
Google Scholar
[13]
Y. Han, W.Y. Li, L. X. Cao, S. Zhang, B. Xu, and B. R. Zhao, Preparation and superconductivity of iron selenide thin films, J. Phys., Condens. Matter, vol. 21 (2009) 235702.
DOI: 10.1088/0953-8984/21/23/235702
Google Scholar
[14]
M. J. Wang, J. Y. Luo, T. W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P.M. Wu, A.M. Chang and M.K. Wu, Crystal orientation and thickness dependence of the superconducting transition temperature of tetragonal FeSe1-x thin films, Phys. Rev. Lett., vol. 103 (2009) 117002.
DOI: 10.1103/physrevlett.103.117002
Google Scholar
[15]
I. Tsukada, M. Hanawa, T. Akiike, F. Nabeshima, Y. Imai, A. Ichinose, S. Komiya, T. Hikage, T. Kawaguchi and H. Ikuta, Epitaxial growth of FeSe0.5Te0.5 thin films on CaF2 substrates with high critical current density, Appl. Phys. Express, vol. 4 (2011) 053101.
DOI: 10.1143/apex.4.053101
Google Scholar
[16]
J. Huang, L. Chen, L. Li, Z. Qi, X. Sun, X. Zhang and H. Wang, Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates, J. Phys. D, Appl. Phys., vol. 51 (2018) 205301.
DOI: 10.1088/1361-6463/aabc70
Google Scholar
[17]
J. Huang, L. Chen, J. Jian, F. Khatkhatay, C. Jacob and H. Wang, A simplified superconducting coated conductor design with Fe-based superconductors on glass and flexible metallic substrates, J. Alloy Compounds, vol. 647 (2015) p.380–385.
DOI: 10.1016/j.jallcom.2015.06.109
Google Scholar
[18]
Z. Shermadini, A.M. Krzton, M. Bendele, R. Khasanov, H. Luetkens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen and A. Amato, Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2, Phys. Rev. Lett., vol. 106 (2011) 117602.
DOI: 10.1103/physrevlett.106.117602
Google Scholar
[19]
T.-W. Huang, T-K. Chen, K-W. Yeh, C-T. Ke, C-L. Chen, Y-L. Huang, F-C. Hsu, M-K. Wu, P. M. Wu, M. Avdeev and Andrew J. Studer, Doping-driven structural phase transition and loss of superconductivity in MxFe1-x Seδ (M = Mn, Cu), Phys. Rev. B, vol. 82 (2010) 104502.
Google Scholar
[20]
L. Chen, J. Huang, C-F. Tsai, Y. Zhu, J. Jian, A. Chen, Z. Bi, F. Khatkhatay, N. Cornell and A. Zakhidov, Superconducting properties of FeSexTe1-x thin film with a composition close to antiferromagnetic ordering, Supercond. Sci. Technol., vol. 26 (2013) 112001.
DOI: 10.1088/0953-2048/26/11/112001
Google Scholar
[21]
J. Huang, H. Wang, H. Wang, B. Zhang, X. Qian and Haiyan Wang, Superconducting Iron Chalcogenide Thin Films Integrated on Flexible Mica Substrates, IEEE Transc. Appl. Supercond., vol. 29 (2019) 5.
DOI: 10.1109/tasc.2019.2906771
Google Scholar
[22]
X. F. Lu, L. A. Majewski, A. M. Song, Electrical characterization of mica as an insulator for organic field-effect transistors, Org. Electron, 9 (2008) 473.
DOI: 10.1016/j.orgel.2008.02.007
Google Scholar
[23]
H. Poppa and A. G. Elliot, The Surface Composition of Mica Substrates. Surf. Sci. vol. 24 (1971) 149-163.
DOI: 10.1016/0039-6028(71)90225-1
Google Scholar
[24]
C. Mauguin, Êtude du mica muscovite au moyen des rayons X, Comptes Rendus, vol. 185 (1927) p.288–291.
Google Scholar
[25]
S. Haindl, M. Kidszun, S. Oswald, C. Hess, B. Buchner, S. Kolling, L. Wilde, T. Thersleff, VV. Yurchenko, M. Jourdan, H. Hiramatsu and H. Hosono, Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review. Rep. Prog. Phys. 77 (2014) 046502.
DOI: 10.1088/0034-4885/77/4/046502
Google Scholar
[26]
H. Izawa, Y. Mizuguchi, T. Ozaki, Y. Takano, O. Miura, Evolution of Tetragonal Phase in the FeSe Wire Fabricated by a Novel Chemical-Transformation Powder-in-Tube Process, J. Appl. Phys. 51 (2012) 010101.
DOI: 10.7567/jjap.51.010101
Google Scholar
[27]
S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37K), Phys. Rev. B 80 (2009) 064506.
DOI: 10.1103/physrevb.80.064506
Google Scholar
[28]
E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, R. Khasanov, Synthesis crystal structure and chemical stability of the superconductor FeSe1−x, Phys. Rev. B 80 (2009) 024517.
DOI: 10.1103/physrevb.80.024517
Google Scholar
[29]
J. N. Millican, D. Phelan, E. L. Thomas, J. B. Leao, E. Carpenter, Pressure-Induced Effects on the Structure of the FeSe Superconductor, Solid State Commun. 149 (2009) 707.
DOI: 10.1016/j.ssc.2009.02.011
Google Scholar
[30]
S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann and C. Felser, Superconductivity at 36 K in beta-Fe1.01Se with the compression of the interlayer separation under pressure, Nat. Matls. 8 (2009) 630.
DOI: 10.1038/nmat2491
Google Scholar
[31]
P. Yuan, Z. Xu, H. Zhang, D. Wang, Y. Ma, M. Zhang and J. Li, High performance FeSe0.5Te0.5 thin films grown at low temperature by pulsed laser deposition. Supercond. Sci. Tech. 28 (2015) 065009.
DOI: 10.1088/0953-2048/28/6/065009
Google Scholar
[32]
V. Tsurkan, J. Deisenhofer, A. Gunther, Ch. Kant, M. Klemm, H.-A. Krug von Nidda, F. Schrettle and A. Loidl, Physical properties of FeSe0.5Te0.5 single crystals grown under different conditions. Eur. Phys. J. B 79 (2011) 289–299.
DOI: 10.1140/epjb/e2010-10473-5
Google Scholar
[33]
M. Raposo, Q. Ferreira and P. A. Ribeiro, Guide for Atomic Force Microscopy Analysis of Soft-Condensed Matter, Modern Research and Educational Topics in Microscopy. A. Méndez-Vilas and J. Díaz (Eds.) 758-769.
Google Scholar
[34]
C. H. Ma, J. C. Lin, H. J. Liu, T. H. Do, Y. M. Zhu, Q. Zhan, P. W. Chiu, Y. H. Chu, The Dielectric Constant of Mica, J. R. Weeks. Phys. Rev, 19 (1922) 319.
Google Scholar
[35]
S. Molatta, S. Haindl, S. Trommler, M. Sabine, Wurmehl and R. Hühne, Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films, Sci Rep. 5 (2015) 16334.
DOI: 10.1038/srep16334
Google Scholar
[36]
S. Molatta, Einfluss dynamischer Verspannung auf supraleitende Eigenschaften in FeSe1−xTex Schichten. Diploma thesis, TU Dresden (2014).
Google Scholar
[37]
K. Tanabe and H. Hosono, Frontiers of Research on Iron-Based Superconductors toward Their Application. Appl. Phys. Jpn. 51, (2011) 1R.
DOI: 10.7567/jjap.51.010005
Google Scholar
[38]
K.-W. Yeh., T-W. Huang, Y-L. Huang, T-K. Chen, F-C. Hsu, P. M. Wu, Y-Ch Lee, Y-Y. Chu, C-L. Chen, J-Y. Luo, Tellurium substitution effect on superconductivity of the a-phase iron selenide. Europhys. Lett. 84 (2008) 37002.
DOI: 10.1209/0295-5075/84/37002
Google Scholar
[39]
Y. Imai, T. Akiike, M. Hanawa, I. Tsukada, A. Ichinose, A. Maeda, T. Hikage, T. Kawaguchi and H. Ikuta, Systematic Comparison of Eight Substrates in the Growth of FeSe0.5Te0.5 Superconducting Thin Films. Appl. Phys. Express 3, (2010) 043102.
DOI: 10.1143/apex.3.043102
Google Scholar
[40]
S. X Huang., C. L. Chien, V. Thampy and C. Broholm, Control of Tetrahedral Coordination and Superconductivity in FeSe0.5Te0.5 Thin Films. Phys. Rev. Lett. 104 (2010) 217002.
Google Scholar
[41]
M. Hanawa, A. Ichinose, S. Komiya, I. Tsukada, Y. Imai and A. Maeda. Empirical Selection Rule of Substrate Materials for Iron Chalcogenide Superconducting Thin Films. Jpn. J. Appl. Phys. 51, (2012) 010104.
DOI: 10.7567/jjap.51.010104
Google Scholar
[42]
E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marrè, M. R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, and C. Ferdeghini Tc = 21 K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain. Appl. Phys. Lett. 96, (2010) 102512.
DOI: 10.1063/1.3358148
Google Scholar
[43]
Imai Y., Sawada Y., Nabeshima F. & Maeda A. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1−xTex thin films. P. Natl. Acad. Sci. USA 112, (2015) 1937–1940.
DOI: 10.1073/pnas.1418994112
Google Scholar
[44]
E. Bellingeri, S. Kawale, V. Braccini, R. Buzio, A. Gerbi, A. Martinelli, M. Putti, I. Pallecchi, G. Balestrino, A. Tebanoet al, Tuning of the superconducting properties of FeSe0.5Te0.5 thin films through the substrate effect. Supercond. Sci. Tech. 25, 084022 (2012).
DOI: 10.1088/0953-2048/25/8/084022
Google Scholar
[45]
S. Kawale et al. Comparison of Superconducting Prop- erties of FeSe0.5Te0.5 Thin Films Grown on Different Substrates. IEEE T. Appl. Supercon. 23, (2013) 7500704.
Google Scholar
[46]
T. Horide, M. Sanyoushi , A. Ichinose & Matsumoto K. Influence of strain and composition on Tc in FeSe1−xTex films. J. Appl. Phys. 116, 213906 (2014).
DOI: 10.1063/1.4902393
Google Scholar
[47]
P. Rui, X.H. Chao, F.D. La, In-situ spectroscopic studies and interfacial engineering on FeSe/oxide heterostructures: Insights on the interfacial superconductivity, Chin. Phys. B, 24 (2015) No. 11-117902.
DOI: 10.1088/1674-1056/24/11/117902
Google Scholar
[48]
Magnetizability,, IUPAC Compendium of Chemical Terminology- The Gold Book (2nd edition), International Union of Pure and Applied Chemistry, (1997).
Google Scholar