The Effect of Vapor Transport Annealing on FeSe Films Deposited on 2D Material

Article Preview

Abstract:

Owing to its simple crystal structure, tetragonal FeSe has been considered as a perfect candidate for investigating the interplays among the superconductivity, magnetism and structural phase transition. Previous works had revealed that superconductivity could only be seen in samples with Se deficiency for the otherwise ferromagnetic tetragonal FeSe. In this study, we investigated the effect of vapor transport annealing on the crystalline quality of FeSe films deposited on flexible muscovite (mica) substrates by pulsed laser deposition. The annealing processes were conducted by sealing FeSe powder in tandem with the as-deposited FeSe films in a quartz tube. The FeSe powder was placed at a distance of about 18.5 cm from the FeSe films and the entire sealed quartz tube (about 1.2 cm in diameter) assembly was put into a Lindberg three-zone furnace and maintained a temperature gradient between the two ends of the quartz tube. The results showed that FeSe films successfully grown on flexible mica substrates and the annealing did improve the morphology and crystallinity of the films, however, the films appeared to have more inhomogeneous phases. We suspect that this might be due to uncompleted FeSe phase nucleation in non-optimum condition. The interface between the muscovite substrate and the FeSe films also could be the caused of the formation of other impurity phases, such as FeSe2 and Fe3Se4. Consequently, the obtained films exhibited only paramagnetic behaviors, and there was no sign of zero-resistance down to 2 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-20

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc, 130 (2008) 3296-3297.

DOI: 10.1021/ja800073m.s002

Google Scholar

[2] S. Subashi, K. Terakura and H. Hosono, A Possible Ground State and Its Electronic Structure of a Mother Material (LaOFeAs) of New Superconductors, J. Phys. Soc. Jpn, 77 (2008) 053709.

DOI: 10.1143/jpsj.77.053709

Google Scholar

[3] K. Ishida, Y. Nakai and H. Hosono, To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report, J. Phys. Soc. Jpn, 78 (2009) 062001.

DOI: 10.1143/jpsj.78.062001

Google Scholar

[4] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan and M. K. Wu, Superconductivity in the PbO-type Structure α–FeSe, Proc. Natl. Acd. Sci, 105 (2008) 142627.

DOI: 10.1073/pnas.0807325105

Google Scholar

[5] H. Okamoto, The Fe-Se (iron-selenium) System, J. Phase Equilibria, 12(3) (1991) 383-389.

Google Scholar

[6] K. W. Yeh, H. C. Hsu, T. W. Huang, P. M. Wu, Y. L. Huang, T. K. Chen, J. Y. Luo, M. K. Wu, Se and Te Doping Study of the FeSe Superconductors, J. Phys. Soc. Jpn, 77 (2008) 19-22.

DOI: 10.1143/jpsjs.77sc.19

Google Scholar

[7] B. K. Jain, A. K. Singh, K. J. Chandra, Phys. F. Met. Phys, 8 (1978) 2625 and references therein.

Google Scholar

[8] K. Hirakawa, The Magnetic Properties of Iron Selenide Single Crystals, J. Phys. Soc. Jpn, 12 (1957) 929.

DOI: 10.1143/jpsj.12.929

Google Scholar

[9] W. Schuster, H. Mi Mer, and K. L. Komarek, Transition Metal-chalcogen Systems VII: the iron-selenium phase diagram, Monatshefte für Chemie, 110 (1979) 1153-1170.

DOI: 10.1007/bf00910963

Google Scholar

[10] Q. J. Feng, D. Z Shen, J. Y. Zhang, B. S. Li, B. H. Li, Y. M. Lu, X. W. Fan, H. W. Liang, Ferromagnetic FeSe: Structural, electrical, and magnetic properties, Appl. Phys. Lett, 88 (2006) 012505.

DOI: 10.1063/1.2159561

Google Scholar

[11] X. J. Wu, Z. Z. Zhang, J. Y. Zhang, Z. G. Jia, Z. Shen, B. H. Lia, C. X. Shan, Y. M. Lua, Structural and Electrical Characterizations of Single Tetragonal FeSe on Si substrate, J. Cryst. Growth, 300 (2007) 483-485.

DOI: 10.1016/j.jcrysgro.2006.12.048

Google Scholar

[12] J. Huang, L. Chen, J. Jian, K. Tyler, L. Li and H. Wang, Magnetic (CoFe2O4)0.1(CeO2)0.9 nanocomposite as effective pinning centers in FeSe0.1Te0.9 thin films," J. Phys., Condens. Matter, vol. 28 (2016) 025702.

DOI: 10.1088/0953-8984/28/2/025702

Google Scholar

[13] Y. Han, W.Y. Li, L. X. Cao, S. Zhang, B. Xu, and B. R. Zhao, Preparation and superconductivity of iron selenide thin films, J. Phys., Condens. Matter, vol. 21 (2009) 235702.

DOI: 10.1088/0953-8984/21/23/235702

Google Scholar

[14] M. J. Wang, J. Y. Luo, T. W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P.M. Wu, A.M. Chang and M.K. Wu, Crystal orientation and thickness dependence of the superconducting transition temperature of tetragonal FeSe1-x thin films, Phys. Rev. Lett., vol. 103 (2009) 117002.

DOI: 10.1103/physrevlett.103.117002

Google Scholar

[15] I. Tsukada, M. Hanawa, T. Akiike, F. Nabeshima, Y. Imai, A. Ichinose, S. Komiya, T. Hikage, T. Kawaguchi and H. Ikuta, Epitaxial growth of FeSe0.5Te0.5 thin films on CaF2 substrates with high critical current density, Appl. Phys. Express, vol. 4 (2011) 053101.

DOI: 10.1143/apex.4.053101

Google Scholar

[16] J. Huang, L. Chen, L. Li, Z. Qi, X. Sun, X. Zhang and H. Wang, Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates, J. Phys. D, Appl. Phys., vol. 51 (2018) 205301.

DOI: 10.1088/1361-6463/aabc70

Google Scholar

[17] J. Huang, L. Chen, J. Jian, F. Khatkhatay, C. Jacob and H. Wang, A simplified superconducting coated conductor design with Fe-based superconductors on glass and flexible metallic substrates, J. Alloy Compounds, vol. 647 (2015) p.380–385.

DOI: 10.1016/j.jallcom.2015.06.109

Google Scholar

[18] Z. Shermadini, A.M. Krzton, M. Bendele, R. Khasanov, H. Luetkens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen and A. Amato, Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2, Phys. Rev. Lett., vol. 106 (2011) 117602.

DOI: 10.1103/physrevlett.106.117602

Google Scholar

[19] T.-W. Huang, T-K. Chen, K-W. Yeh, C-T. Ke, C-L. Chen, Y-L. Huang, F-C. Hsu, M-K. Wu, P. M. Wu, M. Avdeev and Andrew J. Studer, Doping-driven structural phase transition and loss of superconductivity in MxFe1-x Seδ (M = Mn, Cu), Phys. Rev. B, vol. 82 (2010) 104502.

Google Scholar

[20] L. Chen, J. Huang, C-F. Tsai, Y. Zhu, J. Jian, A. Chen, Z. Bi, F. Khatkhatay, N. Cornell and A. Zakhidov, Superconducting properties of FeSexTe1-x thin film with a composition close to antiferromagnetic ordering, Supercond. Sci. Technol., vol. 26 (2013) 112001.

DOI: 10.1088/0953-2048/26/11/112001

Google Scholar

[21] J. Huang, H. Wang, H. Wang, B. Zhang, X. Qian and Haiyan Wang, Superconducting Iron Chalcogenide Thin Films Integrated on Flexible Mica Substrates, IEEE Transc. Appl. Supercond., vol. 29 (2019) 5.

DOI: 10.1109/tasc.2019.2906771

Google Scholar

[22] X. F. Lu, L. A. Majewski, A. M. Song, Electrical characterization of mica as an insulator for organic field-effect transistors, Org. Electron, 9 (2008) 473.

DOI: 10.1016/j.orgel.2008.02.007

Google Scholar

[23] H. Poppa and A. G. Elliot, The Surface Composition of Mica Substrates. Surf. Sci. vol. 24 (1971) 149-163.

DOI: 10.1016/0039-6028(71)90225-1

Google Scholar

[24] C. Mauguin, Êtude du mica muscovite au moyen des rayons X, Comptes Rendus, vol. 185 (1927) p.288–291.

Google Scholar

[25] S. Haindl, M. Kidszun, S. Oswald, C. Hess, B. Buchner, S. Kolling, L. Wilde, T. Thersleff, VV. Yurchenko, M. Jourdan, H. Hiramatsu and H. Hosono, Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review. Rep. Prog. Phys. 77 (2014) 046502.

DOI: 10.1088/0034-4885/77/4/046502

Google Scholar

[26] H. Izawa, Y. Mizuguchi, T. Ozaki, Y. Takano, O. Miura, Evolution of Tetragonal Phase in the FeSe Wire Fabricated by a Novel Chemical-Transformation Powder-in-Tube Process, J. Appl. Phys. 51 (2012) 010101.

DOI: 10.7567/jjap.51.010101

Google Scholar

[27] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37K), Phys. Rev. B 80 (2009) 064506.

DOI: 10.1103/physrevb.80.064506

Google Scholar

[28] E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, R. Khasanov, Synthesis crystal structure and chemical stability of the superconductor FeSe1−x, Phys. Rev. B 80 (2009) 024517.

DOI: 10.1103/physrevb.80.024517

Google Scholar

[29] J. N. Millican, D. Phelan, E. L. Thomas, J. B. Leao, E. Carpenter, Pressure-Induced Effects on the Structure of the FeSe Superconductor, Solid State Commun. 149 (2009) 707.

DOI: 10.1016/j.ssc.2009.02.011

Google Scholar

[30] S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann and C. Felser, Superconductivity at 36 K in beta-Fe1.01Se with the compression of the interlayer separation under pressure, Nat. Matls. 8 (2009) 630.

DOI: 10.1038/nmat2491

Google Scholar

[31] P. Yuan, Z. Xu, H. Zhang, D. Wang, Y. Ma, M. Zhang and J. Li, High performance FeSe0.5Te0.5 thin films grown at low temperature by pulsed laser deposition. Supercond. Sci. Tech. 28 (2015) 065009.

DOI: 10.1088/0953-2048/28/6/065009

Google Scholar

[32] V. Tsurkan, J. Deisenhofer, A. Gunther, Ch. Kant, M. Klemm, H.-A. Krug von Nidda, F. Schrettle and A. Loidl, Physical properties of FeSe0.5Te0.5 single crystals grown under different conditions. Eur. Phys. J. B 79 (2011) 289–299.

DOI: 10.1140/epjb/e2010-10473-5

Google Scholar

[33] M. Raposo, Q. Ferreira and P. A. Ribeiro, Guide for Atomic Force Microscopy Analysis of Soft-Condensed Matter, Modern Research and Educational Topics in Microscopy. A. Méndez-Vilas and J. Díaz (Eds.) 758-769.

Google Scholar

[34] C. H. Ma, J. C. Lin, H. J. Liu, T. H. Do, Y. M. Zhu, Q. Zhan, P. W. Chiu, Y. H. Chu, The Dielectric Constant of Mica, J. R. Weeks. Phys. Rev, 19 (1922) 319.

Google Scholar

[35] S. Molatta, S. Haindl, S. Trommler, M. Sabine, Wurmehl and R. Hühne, Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films, Sci Rep. 5 (2015) 16334.

DOI: 10.1038/srep16334

Google Scholar

[36] S. Molatta, Einfluss dynamischer Verspannung auf supraleitende Eigenschaften in FeSe1−xTex Schichten. Diploma thesis, TU Dresden (2014).

Google Scholar

[37] K. Tanabe and H. Hosono, Frontiers of Research on Iron-Based Superconductors toward Their Application. Appl. Phys. Jpn. 51, (2011) 1R.

DOI: 10.7567/jjap.51.010005

Google Scholar

[38] K.-W. Yeh., T-W. Huang, Y-L. Huang, T-K. Chen, F-C. Hsu, P. M. Wu, Y-Ch Lee, Y-Y. Chu, C-L. Chen, J-Y. Luo, Tellurium substitution effect on superconductivity of the a-phase iron selenide. Europhys. Lett. 84 (2008) 37002.

DOI: 10.1209/0295-5075/84/37002

Google Scholar

[39] Y. Imai, T. Akiike, M. Hanawa, I. Tsukada, A. Ichinose, A. Maeda, T. Hikage, T. Kawaguchi and H. Ikuta, Systematic Comparison of Eight Substrates in the Growth of FeSe0.5Te0.5 Superconducting Thin Films. Appl. Phys. Express 3, (2010) 043102.

DOI: 10.1143/apex.3.043102

Google Scholar

[40] S. X Huang., C. L. Chien, V. Thampy and C. Broholm, Control of Tetrahedral Coordination and Superconductivity in FeSe0.5Te0.5 Thin Films. Phys. Rev. Lett. 104 (2010) 217002.

Google Scholar

[41] M. Hanawa, A. Ichinose, S. Komiya, I. Tsukada, Y. Imai and A. Maeda. Empirical Selection Rule of Substrate Materials for Iron Chalcogenide Superconducting Thin Films. Jpn. J. Appl. Phys. 51, (2012) 010104.

DOI: 10.7567/jjap.51.010104

Google Scholar

[42] E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marrè, M. R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, and C. Ferdeghini Tc = 21 K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain. Appl. Phys. Lett. 96, (2010) 102512.

DOI: 10.1063/1.3358148

Google Scholar

[43] Imai Y., Sawada Y., Nabeshima F. & Maeda A. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1−xTex thin films. P. Natl. Acad. Sci. USA 112, (2015) 1937–1940.

DOI: 10.1073/pnas.1418994112

Google Scholar

[44] E. Bellingeri, S. Kawale, V. Braccini, R. Buzio, A. Gerbi, A. Martinelli, M. Putti, I. Pallecchi, G. Balestrino, A. Tebanoet al, Tuning of the superconducting properties of FeSe0.5Te0.5 thin films through the substrate effect. Supercond. Sci. Tech. 25, 084022 (2012).

DOI: 10.1088/0953-2048/25/8/084022

Google Scholar

[45] S. Kawale et al. Comparison of Superconducting Prop- erties of FeSe0.5Te0.5 Thin Films Grown on Different Substrates. IEEE T. Appl. Supercon. 23, (2013) 7500704.

Google Scholar

[46] T. Horide, M. Sanyoushi , A. Ichinose & Matsumoto K. Influence of strain and composition on Tc in FeSe1−xTex films. J. Appl. Phys. 116, 213906 (2014).

DOI: 10.1063/1.4902393

Google Scholar

[47] P. Rui, X.H. Chao, F.D. La, In-situ spectroscopic studies and interfacial engineering on FeSe/oxide heterostructures: Insights on the interfacial superconductivity, Chin. Phys. B, 24 (2015) No. 11-117902.

DOI: 10.1088/1674-1056/24/11/117902

Google Scholar

[48] Magnetizability,, IUPAC Compendium of Chemical Terminology- The Gold Book (2nd edition), International Union of Pure and Applied Chemistry, (1997).

Google Scholar