[1]
M.B. Isman, Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann Rev of Entomol. 51 (2006) 45-66.
DOI: 10.1146/annurev.ento.51.110104.151146
Google Scholar
[2]
F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar, Biological effects of essential oils- A review. Food Chem Toxicol. 46 (2008) 446-475.
DOI: 10.1016/j.fct.2007.09.106
Google Scholar
[3]
M. Kanat, M.H. Alma, Insecticidal effects of essential oils from various plants against larvae of pine processionary moth (Thaumetopoea pityocampa Schiff) (Lepidoptera: Thaumetopoeidae). Pest Manag Sci 60 (2003) 173–177.
DOI: 10.1002/ps.802
Google Scholar
[4]
A. Ayvaz, S. Albayrak, S. Karaborklu, Gamma radiation sensitivity of the eggs, larvae and pupae of Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Manag Sci. 64 (2008) 505-512.
DOI: 10.1002/ps.1526
Google Scholar
[5]
A. Ebadollahi, Iranian Plant Essential Oils as Sources of Natural Insecticide Agents. Interesting J Bio Chem. (2011) 266-290.
DOI: 10.3923/ijbc.2011.266.290
Google Scholar
[6]
M.B. Isman, Plant essential oils for pest and disease management. Crop Prot. 19 (2000) 603-608.
DOI: 10.1016/s0261-2194(00)00079-x
Google Scholar
[7]
E. Shaaya, U. Rapid, N. Paster, B. Juvenile, U. Zisman and V. Passage, Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecolab, 17 (1991) 499-504.
DOI: 10.1007/bf00982120
Google Scholar
[8]
S.I. Kim, J.Y. Roh, D.H. Kim, H.S . Lee, Y.J. Ahn, Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J Stored Prod Res, 39, 293-303 (2003).
DOI: 10.1016/s0022-474x(02)00017-6
Google Scholar
[9]
S.E. Lee, C.J. Peterson, J.Y. coats, Fumigation toxicity of monoterpenoids to several stored-product insects. J Stored Prod Re. 39 (2003), 77-85.
DOI: 10.1016/s0022-474x(02)00020-6
Google Scholar
[10]
J. Shakarami, M. Falahzadeh, S. Almasi, Fumigation toxicity and oviposition deterrency of four plant essential oils on cowpea beetle. J Plant Port. 2 (2010) 265-276.
Google Scholar
[11]
A. Arabi, A. Mirzapour, H. Chabok, M. Shafiee and M. Saffari, reparation methods of nanoliposomes containing Zataria multiflora essential oil: A comparative study. Biosci Biotech Res Comm. 10(1) (2017)151-160.
DOI: 10.21786/bbrc/10.1/23
Google Scholar
[12]
M. A. Khosravi Zanjani, N. Mohammadi, M. Zojaji, H. Bakhoda. Chemical Composition of the Essential Oil of Mentha pulegium L. and its Antimicrobial Activity on Proteus mirabilis, Bacillus subtilis and Zygosaccharomyces rouxii. J Food BiosciTech. 5(2) (2015) 31-40.
Google Scholar
[13]
D. Abedi, M. Jalali, G. Asghari and N. Sadeghi. Composition and antimicrobial activity of oleo gumresin of Ferula gumosa Bioss. essential oil using Alamar Blue™. J Res Pharm Sci. 3(1) (2008) 41-45.
Google Scholar
[14]
S.A. Khatibi, A. Misaghi, M.H. Moosavy, G. Amoabediny and A.A. Basti, Effect of Preparation Methods on the Properties of Zataria multiflora Boiss. Essential Oil Loaded Nanoliposomes: Characterization of Size, Encapsulation Efficiency and Stability. Pharm Sci. 20 (2015) 141-148.
DOI: 10.1111/jam.13641
Google Scholar
[15]
B. F. Gibbs, S. Kermasha, C. N. Alli I, Mulligan. Encapsulation in the Food Industry: A Review. Int. J. Food Sci. Nut. 50 (1990) 213–224.
Google Scholar
[16]
M.R. Mozafari. Bioactive entrapment and Targeting using Nanocarier Technologies: An Introduction. In Nanocarier Technologies: Frontiers of Nanotherapy.The Netherlands. (2006)1-16.
Google Scholar
[17]
M. Sherry, C. Charcosset, H. Fessi and G. Greige, Essential oils encapsulated in liposomes: a review. J Liposome Res. 23(4) (2013) 268-275.
DOI: 10.3109/08982104.2013.819888
Google Scholar
[18]
M.R. Mozafari, Nanoliposomes: preparation and analysis. Journal of Methods in Molecuar Biology. 605 (2010) 29-50.
Google Scholar
[19]
M. Voinea and M. Simionescu, Designing of intelligent liposomes for efficient delivery of drugs. J Cell Mol Medi. 6 (2002) 465-74.
DOI: 10.1111/j.1582-4934.2002.tb00450.x
Google Scholar
[20]
P.A. Yoshida, D. Yokohama and M.A. Foglio, Liposomes incorporating essential oil of Brazilian cherry (Eugena uniflora L.): characterization of aqueous dispersions and lyophilized formulations. J Microencapsul. 27 (2010) 416-25.
DOI: 10.3109/02652040903367327
Google Scholar
[21]
D. Valenti, A. De Logu, G. Loy, C. Sinico, L. Bonsignore, F. Cottiglia, D. Garau and A.M. Fadda. Liposome-incorporation Santolina insularis essential oil: Preparation, characterization and in vitro antiviral activity. J Liposome Res. 11(2011) 73-90.
DOI: 10.1081/lpr-100103171
Google Scholar
[22]
A. Zabihi, A. Akhondzadeh Basti, G. Amoabediny, B.J. Khanjari Tavakkoly, F. Mohammadkhan, B.A. Hajjar and E. Vanaki, Physicochemical characteristics of nanoliposome garlic (Allium sativum L.) essential oil and its antibacterial effect on Escherichia coli O157: H7. J Food Qual Hazards Control. 4 (1)(2017) 24-28.
Google Scholar
[23]
A. D. Bangham, M.M. Standish, J.C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13 (1965) 238-252.
DOI: 10.1016/s0022-2836(65)80093-6
Google Scholar
[24]
W.S. Abbott, A method for computing the effectiveness of an insecticide. J Econ Entomol. 18 (1925) 265-267.
Google Scholar
[25]
D.K. Mueller, Fumigation. In: A. Mallis (ed.): Handbook of Pest Control. Franzak and Foster Co Cleveland Ohio. (1990) 901-939.
Google Scholar
[26]
J.M.R. Thacker, An Introduction to Arthropod Pest Control. Cambridge, UK:Cambridge Univ Press.(2002) 343 pp.
Google Scholar
[27]
Y. Shoji and H. Nakashima, Nutraceutics and delivery systems. J Drug Target. 12 (2004) 385-391.
Google Scholar
[28]
A. Stimac, M. Sekutor, K. Mlinaric´-Majerski, L. Frkanec and R. Frkanec, Adamantane in Drug Delivery Systems and Surface Recognition. Molecule. 22 (2017) 297.
DOI: 10.3390/molecules22020297
Google Scholar
[29]
M.Saffari, H.R. Moghimi and C.R. Dass, Barriers to Liposomal Gene Delivery: from Application Site to the Target. Iran J Pharm Res.15(Suppl) (2016) 3-17.
Google Scholar
[30]
E. Moghimipour, N. Aghel, A. Zarei Mahmoudabadi, Z. Ramen animal, S. Handali. Preparation and Characterization of Liposomes Containing Essential Oil of Eucalyptus camaldulensis Leaf. J Nat Pharm Prod. 7(3) (2012)117-122.
DOI: 10.17795/jjnpp-5261
Google Scholar
[31]
C. Sinico, A. De Logu and F. Lai, Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm. 1 (2005) 161-8.
DOI: 10.1016/j.ejpb.2004.06.005
Google Scholar
[32]
. B. Ruozi, G. Tosi, F. Forni, M. Fiesta and M.A. Vanderbilt, Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. Eur J Pharm Sci. 25 (2005) 81-89.
DOI: 10.1016/j.ejps.2005.01.020
Google Scholar
[33]
Y. Maitani, H. Soeda, W. Junping, K. Takayama, Modified ethanol injection method for liposomes containing beta-sitosterol beta-D-glucoside. J Liposome Res.11 (2001)115–25.
DOI: 10.1081/lpr-100103174
Google Scholar
[34]
C.B. Detoni, D.M. deOliveira, I.E. Santo, Evaluation of thermal-oxidative stability and antiglioma activity of Zanthoxylum tingoassuiba essential oil entrapped into multi- and unilamellar liposomes. J Liposome Res. 22 (2012)1–7.
DOI: 10.3109/08982104.2011.573793
Google Scholar
[35]
J. Jiang, G. Oberdo rster, P. Biswas. Characterization of size, surfac echarge, and agglomeration state of nanoparticle dispersions for toxicological studies. J NanoparticleRes.11 (2009)77-89.
DOI: 10.1007/s11051-008-9446-4
Google Scholar
[36]
R. J. Hunter. Zeta Potential in Colloid Science: Principles and Applications. Academic Press. (2013).
Google Scholar
[37]
C. Freitas, R. H. Muller. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNt) dispersions. Int.J.Pharm.168 (1998) 221-229.
DOI: 10.1016/s0378-5173(98)00092-1
Google Scholar
[38]
R. Shah, D. Eldridge, E. Palombo, I. Harding. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zetapotential. J.Phys.Sci. 25(2014) 59.
Google Scholar
[39]
Colas JS, Shi W, Rao VSNM, Omri A, Mozafari MR, Singh H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron. 38 (2007) 841–847.
DOI: 10.1016/j.micron.2007.06.013
Google Scholar
[40]
M. Ziaee, S. Moharramipour, A. Mohsenifar. Chitosan Nanogel Loaded with Cuminum cyminum Essential Oil for Efficient Management of Two Stored Product Beetle Pests. J. Pest Sci.,87 (2014) 691-699.
DOI: 10.1007/s10340-014-0590-6
Google Scholar
[41]
K. M. Loha, N. A. Shakil, J. Kumar, M.K. Singh, C. Srivastava. Bio-efficacy evaluation of nanoformulations of β-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health B. 47(7) (2014) 687-91.
DOI: 10.1080/03601234.2012.669254
Google Scholar
[42]
G. S.Passino, E. Bazzoni, M.D. L. Moretti. Microencapsulated essential oils active against indianmeal moth. Boletin de Sanidad Vegetal Plagas, 30(2004) 125-132.
Google Scholar
[43]
O. Nuchuchua, S. Usawadee, N. Uawongyart, S. Puttipipatkhachorn, A. Soottitantawat, U. Ruktanonchai. In Vitro Characterization and Mosquito (Aedes aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions. American Association of Pharmaceutical Scientists, 10 (2009) 1234-1242.
DOI: 10.1208/s12249-009-9323-1
Google Scholar