Optimization Aging Parameters of Mg Silica Aerogel Using Box-Behnken Approach

Article Preview

Abstract:

The main objective of the present study was to investigate the application of Box–Behnken design which is a type of optimization design of response surface methodology (RSM) to predict and optimize some aging condition of magnesium silica aerogel (MSA) for improving surface properties such as surface area, pore volume and pore size. Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) techniques, tap density method and helium pycnometer were used to characterize aerogels. The operating conditions were optimized as a function of the molar ratio of Mg:Si (0.35, 0.50 and 0.65), aging time (24 h, 60 h and 96 h) and aging temperature (50 oC, 70 oC and 90 oC). Lack of fit test indicates that the quadratic regression model was significant with the high coefficients of determination values for all three properties. Optimized aging factors for synthesis MSA with high BET surface area, high BJH pore volume and average BJH pore size were found to be 0.5 Mg:Si molar ratio, 79.62 oC and 61.51 h, respectively. Under these conditions, magnesium silica aerogels have great properties: 734 m2.g-1 BET surface area, 0.41 cm3.g-1 BJH pore volume and 4.91 nm BJH pore size, 0.12 g.cm−3 density and 95 % porosity. Box-Behnken is useful optimization tool for production of nanoporous magnesium silica aerogel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-46

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Ghods, M. Rezaei, F. Meshkani, Synthesis of nanostructured magnesium silicate with high surface area and mesoporous structure, Ceram Int. 42 (2016) 6883-6890. http://dx.doi.org/10.1016/j.ceramint.2016.01.073.

DOI: 10.1016/j.ceramint.2016.01.073

Google Scholar

[2] F. Ciesielczyk, A. Krysztafkiewicz, T. Jesionowski, Magnesium silicates–adsorbents of organic compounds, Appl Surf Sci. 253, (2007) 8435-8442. https://doi.org/10.1016/j.apsusc.2007.04.016.

DOI: 10.1016/j.apsusc.2007.04.016

Google Scholar

[3] Q. Lu, Q. Li, J. Zhang, J. Li, J. Lu, Facile mesoporous template-assisted hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient adsorbent, Appl Surf Sci. 360, (2016) 889-895. http://dx.doi.org/10.1016/j.apsusc.2015.11.081.

DOI: 10.1016/j.apsusc.2015.11.081

Google Scholar

[4] J. Zhang, L. Dang, M. Zhang, S. Zhao, Q. Lu, Micro/nanoscale magnesium silicate with hierarchical structure for removing dyes in water, Mater Lett. 196, (2017) 194-197. https://doi.org/10.1016/j.matlet.2017.03.017.

DOI: 10.1016/j.matlet.2017.03.017

Google Scholar

[5] J. Zheng, B.H. Wu, Z.Y. Jiang, Q. Kuang, X.L. Fang, Z.X. Xie, R.B. Huang, L.S. Zheng, General and Facile Syntheses of Metal Silicate Porous Hollow Nanostructures, Chem Asian J. 5, (2010) 1439-1444. https://doi.org/10.1002/asia.200900561.

DOI: 10.1002/asia.200900561

Google Scholar

[6] K. Narasimharaoa, T.T. Alia, S. Bawakeda, S. Basahel, Effect of Si precursor on structural and catalytic properties of nanosize magnesium silicates, Appl Catal A-Gen. 488, (2014) 208-218. https://doi.org/10.1016/j.apcata.2014.09.050.

DOI: 10.1016/j.apcata.2014.09.050

Google Scholar

[7] J. Qu, W. Li, C.Y. Cao, X.J. Yin, L. Zhao, J. Bai, Z. Qin, W.G. Song, Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water, J. Mater. Chem. 22, (2012) 17222-17226. https://doi.org/10.1039/C2JM33178K.

DOI: 10.1039/c2jm33178k

Google Scholar

[8] Q. Feng, K. Chen, D. Ma, H. Lin, Z. Liu, S. Qin, Y. Luo, Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying, Colloıd Surface A. 539, (2018) 399-406. https://doi.org/10.1016/j.colsurfa.2017.12.025.

DOI: 10.1016/j.colsurfa.2017.12.025

Google Scholar

[9] H. Maleki, L. Durães, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J Non Cryst Solids. 385, (2014) 55-74. https://doi.org/10.1016/j.jnoncrysol.2013.10.017.

DOI: 10.1016/j.jnoncrysol.2013.10.017

Google Scholar

[10] P.C. Thapliyal, K. Singh, Aerogels as Promising Thermal Insulating Materials: An Overview. Journal of Materials, Journal of Materials. (2014) 1-10. http://dx.doi.org/10.1155/2014/127049.

DOI: 10.1155/2014/127049

Google Scholar

[11] X. Du, C. Wang, T. Li, M. Chen, Studies on the performances of silica aerogel electrodes for the application of supercapacitor, Ionics 15, (2009) 561-565. https://doi.org/10.1007/s11581-009-0315-7.

DOI: 10.1007/s11581-009-0315-7

Google Scholar

[12] H. Maleki, L. Durães, C.A. García-González, P. del Gaudio, A. Portugal, M. Mahmoudi, Synthesis and biomedical applications of aerogels: Possibilities and challenges, Adv Colloid Interfac. 236, (2016) 1-27. https://doi.org/10.1016/j.cis.2016.05.011.

DOI: 10.1016/j.cis.2016.05.011

Google Scholar

[13] H. Maleki, Recent advances in aerogels for environmental remediation applications: A review, Chem Eng J. 300, (2016) 98-118. https://doi.org/10.1016/j.cej.2016.04.098.

DOI: 10.1016/j.cej.2016.04.098

Google Scholar

[14] A.E. Gash, T.M. Tillotson, J. H Satcher Jr, L.W. Hrubesh, R.L. Simpson, New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors, J. Non-Cryst. Solids 285, (2001) 22-28. https://doi.org/10.1016/S0022-3093(01)00427-6.

DOI: 10.1016/s0022-3093(01)00427-6

Google Scholar

[15] S. Yücel, B. Karakuzu, P. Terzioğlu, T.M. Temel, Influence of Gel Aging Time on the Properties of Various Silica Aerogels Synthesized From Water Glass, Mater Sci Forum. 866, (2016) 176-180. https://doi.org/10.4028/www.scientific.net/MSF.866.176.

DOI: 10.4028/www.scientific.net/msf.866.176

Google Scholar

[16] T.M. Temel, B. Karakuzu-İkizler, P. Terzioğlu, S. Yücel, Y. Başaran-Elalmış, The effect of process variables on the properties of nanoporous silica aerogels: an approach to prepare silica aerogels from biosilica, J Sol-Gel Sci Technol. 84, (2017) 51-59. https://doi.org/10.1007/s10971-017-4469-x.

DOI: 10.1007/s10971-017-4469-x

Google Scholar

[17] J.P. Nayak, J. Bera, Preparation of Silica Aerogel by Ambient Pressure Drying Process using Rice Husk Ash as Raw Material, Trans Ind Ceram Soc. 68, (2009) 1-4. https://doi.org/10.1080/0371750X.2009.11082163.

DOI: 10.1080/0371750x.2009.11082163

Google Scholar

[18] A. Du, B. Zhou, Z. Zhang, J. Shen, A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel, Materials. 6 (2013) 941-968. https://doi.org/10.3390/ma6030941.

DOI: 10.3390/ma6030941

Google Scholar

[19] F. He, H. Zhao, X. Qu, C. Zhanga, W. Qiu, Modified aging process for silica aerogel, J Mater Process Tech. 209, (2009) 1621-1626. https://doi.org/10.1016/j.jmatprotec.2008.04.009.

DOI: 10.1016/j.jmatprotec.2008.04.009

Google Scholar

[20] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-Behnken design: An alternative for the optimization of analytical methods, Anal Chim Acta. 597, (2007) 179-186. https://doi.org/10.1016/j.aca.2007.07.011.

DOI: 10.1016/j.aca.2007.07.011

Google Scholar

[21] V.K. Garlapati, L. Roy, Utilization of Response Surface Methodology for Modeling and Optimization of Tablet Compression Process, J Young Pharm. 9, (2017) 417-421. https://doi.org/10.5530/jyp.2017.9.82.

DOI: 10.5530/jyp.2017.9.82

Google Scholar

[22] G.E.P. Box, D.W. Behnken, Technometrics 2, (1960) 195.

Google Scholar

[23] S. Brunauer, P.H. Emmett, The Use of Low Temperature van der Waals Adsorption Isotherms in Determining the Surface Areas of Various Adsorbents, J Am Chem Soc, 59, (1937) 2682−2689.

DOI: 10.1021/ja01291a060

Google Scholar

[24] S. Brunauer, P. H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, (1938) 309−319.

DOI: 10.1021/ja01269a023

Google Scholar

[25] Brunauer, S.; Emmett, P. H. The use of van der waals adsorption isotherms in determining the surface area of iron synthetic ammonia catalysts, J Am Chem Soc, 1935, 57, 1754−1755.

DOI: 10.1021/ja01312a503

Google Scholar

[26] S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, On a Theory of the van der Waals Adsorption of Gases, J Am Chem Soc, 62, (1940) 1723−1732.

DOI: 10.1021/ja01864a025

Google Scholar

[27] E. P. Barrett, L. G. Joyner, P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J Am Chem Soc, 73 (1951) 373-380. https://doi.org/10.1021/ja01145a126.

DOI: 10.1021/ja01145a126

Google Scholar

[28] R.P. Patel, N.S. Purohit, A.M. Suthar, An Overview of Silica Aerogels, Int J Chemtech Res. 1, (2009) 1052-1057.

Google Scholar

[29] A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, H.A. Harouni, Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology, J Geochem Explor. 147, (2014) 151-158. https://doi.org/10.1016/j.gexplo.2014.10.005.

DOI: 10.1016/j.gexplo.2014.10.005

Google Scholar

[30] P.B. Sarawade, J.K. Kim, A. Hilonga, H.T. Kim, Influence of aging conditions on textural properties of water-glass-based silica aerogels prepared at ambient pressure, Korean J. Chem. Eng. 27, (2010) 1301-1309. https://doi.org/10.1007/s11814-010-0173-z.

DOI: 10.1007/s11814-010-0173-z

Google Scholar

[31] H. Omranpour, S. Motahari, Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature, J Non Cryst Solids. 379, (2013) 7-11. https://doi.org/10.1016/j.jnoncrysol.2013.07.025.

DOI: 10.1016/j.jnoncrysol.2013.07.025

Google Scholar

[32] S. Smitha, P. Shajesh, P.R. Aravind, S. Rajesh Kumar, P. Krishna Pillai, K.G.K. Warrier, Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels, Micropor Mesopor Mat. 91, (2006) 286-292. https://doi.org/10.1016/j.micromeso.2005.11.051.

DOI: 10.1016/j.micromeso.2005.11.051

Google Scholar

[33] S. Hæreid, J. Anderson, M.A. Einarsrud, D.W. Hua, D.M. Smith, Thermal and temporal aging of TMOS-based aerogel precursors in water, J Non Cryst Solids. 185, (1995) 221-226. https://doi.org/10.1016/0022-3093(95)00016-X.

DOI: 10.1016/0022-3093(95)00016-x

Google Scholar

[34] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications, second ed., San Diego: Academic Press, (1999).

DOI: 10.1016/b978-012598920-6/50004-x

Google Scholar

[35] P. Ouraipryvan, T. Sreethawong, S. Chavadej, Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol–gel process, Mater Lett 63, (2009) 1862-1865. https://doi.org/10.1016/j.matlet.2009.05.068.

DOI: 10.1016/j.matlet.2009.05.068

Google Scholar

[36] J. Sharma, M. Sharma, S. Basu, Synthesis of mesoporous MgO nanostructures using mixed surfactants template for enhanced adsorption and antimicrobial activity, J Environ Chem Eng. 5, (2017) 3429-3438. https://doi.org/10.1016/j.jece.2017.07.015.

DOI: 10.1016/j.jece.2017.07.015

Google Scholar