Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory

Article Preview

Abstract:

The present paper investigates the nonlocal buckling of Zigzag Triple-walled carbon nanotubes (TWCNTs) under axial compression with both chirality and small scale effects. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equations are derived and the critical buckling loads under axial compression are obtained. The TWCNTs are considered as three nanotube shells coupled through the van der Waals interaction between them. The results show that the critical buckling load can be overestimated by the local beam model if the small-scale effect is overlooked for long nanotubes. In addition, a significant dependence of the critical buckling loads on the chirality of zigzag carbon nanotube is confirmed, and these are then compared with: A single-walled carbon nanotubes (SWCNTs); and Double-walled carbon nanotubes (DWCNTs). These findings are important in mechanical design considerations and reinforcement of devices that use carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-119

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bouazza, K. Amara, M. Zidour, A. Tounsi & E. A. Bedia, Postbuckling analysis of nanobeams using trigonometric Shear deformation theory. Appl. Sci. Reports, 10(2), (2015) 112-121.

DOI: 10.18488/journal.79/2015.2.1/79.1.1.14

Google Scholar

[2] A. Hamidi, M. Zidour, K. Bouakkaz, & T. Bensattalah, Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes. In Journal of Nano Research Vol. 51, (2018). 24-38.

DOI: 10.4028/www.scientific.net/jnanor.51.24

Google Scholar

[3] A. Dihaj, M. Zidour, M. Meradjah, K. Rakrak, H. Heireche & A. Chemi, Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model. Structural engineering and mechanics, 65(3), (2018) 335-342.

DOI: 10.12989/anr.2016.4.1.031

Google Scholar

[4] S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem.Phys., 104, (1996) (2089).

DOI: 10.1063/1.470966

Google Scholar

[5] T. Bensattalah, M. Zidour, & T. H. Daouadji, Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory. Advances in materials Research, 7(3), (2018) 163-174.

Google Scholar

[6] M. Grujicic, G. Cao, B. Pandurangana, and W. N. Royb, Finite element analysis-based design of a fluid-flow control nano-valve, Mater. Sci. Eng., B, 117, (2005) 53.

DOI: 10.1016/j.mseb.2004.10.020

Google Scholar

[7] O. Rahmani, V. Refaeinejad, & S. A. H. Hosseini, Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams. Steel Compos. Struct, 23(3), (2017) 339-350.

DOI: 10.12989/scs.2017.23.3.339

Google Scholar

[8] O. Rahmani, S. A. H. Hosseini, & M. Parhizkari, Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: an analytical approach. Microsystem Technologies, 23(7), (2017) 2739-2751.

DOI: 10.1007/s00542-016-3127-5

Google Scholar

[9] S. A. H. Hosseini, & O. Rahmani, Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model. International Journal of Structural Stability and Dynamics, 16(10), (2016) 1550077.

DOI: 10.1142/s0219455415500777

Google Scholar

[10] O. Rahmani, S. S. Asemani, & S. A. H. Hosseini, Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory. Journal of Computational and Theoretical Nanoscience, 12(10), (2015) 3162-3170.

DOI: 10.1166/jctn.2015.4095

Google Scholar

[11] H. Xin, Q. Han, X. Yao, Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation, Composites Science and Technology, 68, (2008) 1809-1814.

DOI: 10.1016/j.compscitech.2008.01.013

Google Scholar

[12] A. R. Ranjbartoreh, A. Ghorbanpour, B. Soltani, Double-walled carbon nanotube with surrounding elastic medium under axial pressure, Physica E., 39, (2007) 230.

DOI: 10.1016/j.physe.2007.04.010

Google Scholar

[13] G. Cao, X. Chen, The effect of the displacement increment on the axial compressive buckling behaviours of single-walled carbon nanotubes, Nanotechnology, 17, (2006) 3844.

DOI: 10.1088/0957-4484/17/15/040

Google Scholar

[14] M. Hussain, M.N. Naeem, A. Tounsi, Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity, Advances in Nano Research, 7(6), (2019) 431-442.

Google Scholar

[15] A. C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science., 10, 1. (1972).

Google Scholar

[16] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics , 54, (1983) 4703.

DOI: 10.1063/1.332803

Google Scholar

[17] W. Adda Bedia, M.S.A. Houari, A. Bessaim, A.A. Bousahla, A. Tounsi, T. Saeed, M.Sh. Alhodaly, A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams, Journal of Nano Research, 57, (2019) 175-191.

DOI: 10.4028/www.scientific.net/jnanor.57.175

Google Scholar

[18] Y. Q. Zhang, G. R. Liu, J. S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Physical Review B, 70, (2004) 205430.

DOI: 10.1103/physrevb.70.205430

Google Scholar

[19] Y. Q. Zhang, G. R. Liu, X. Y. Xie, Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity, Physical Review B, 71, (2005) 195404.

DOI: 10.1103/physrevb.71.195404

Google Scholar

[20] H. Heireche, A. Tounsi, A. Benzair, I. Mechab, Sound wave propagation in single-walled carbon nanotubes with initial axial stress, Journal of Applied Physics., 104, (2008) 014301.

DOI: 10.1063/1.2949274

Google Scholar

[21] I. Belkorissat, M. S. A. Houari, A. Tounsi, E. A. Bedia, & S. R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel and Composite Structures, 18(4), (2015) 1063-1081.

DOI: 10.12989/scs.2015.18.4.1063

Google Scholar

[22] A. Chemi, H. Heireche, M. Zidour, K. Rakrak, and A. A. Bousahla, Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity, Advances in Nano Research, 3(4), (2015) 193-206.

DOI: 10.12989/anr.2015.3.4.193

Google Scholar

[23] B. Guenaneche, S. Benyoucef, A. Tounsi, & E. A. Adda Bedia, Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation. Advances in concrete construction, 7(3), (2019) 151-166.

Google Scholar

[24] V. Refaeinejad, O. Rahmani, & S. A. H. Hosseini, An analytical solution for bending, buckling, and free vibration of FG nanobeam lying on Winkler-Pasternak elastic foundation using different nonlocal higher order shear deformation beam theories. Scientia Iranica, 24(3), (2017) 1635-1653.

DOI: 10.24200/sci.2017.4141

Google Scholar

[25] M. Zarepour, S. A. H. Hosseini, & A. H. Akbarzadeh, Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model. Applied Mathematical Modelling, 69, (2019) 563-582.

DOI: 10.1016/j.apm.2019.01.001

Google Scholar

[26] K. Rakrak, M. Zidour, H. Heireche, A. A. Bousahla, and A. Chemi, Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory. Advances in nano research, 4 (1), (2016) 31-44.

DOI: 10.12989/anr.2016.4.1.031

Google Scholar

[27] M. Kaddari, A. Kaci, A.A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, E. A. Adda Bedia, M.A. Al-Osta, A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis, Computers and Concrete, 25(1) (2020).

DOI: 10.12989/scs.2013.14.4.335

Google Scholar

[28] M. Khiloun, A.A. Bousahla, A. Kaci, A. Bessaim, A. Tounsi, S.R. Mahmoud, Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT, Engineering with Computers., (2019) 1-15.

DOI: 10.1007/s00366-019-00732-1

Google Scholar

[29] M. Balubaid, A. Tounsi, B. Dakhel, S.R. Mahmoud, Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory, Computers and Concrete, 24(6), (2019) 579-586.

Google Scholar

[30] B. A. Hamidi, S. A. Hosseini, R. Hassannejad, & F.Khosravi, An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses, (2019) 1-18.

DOI: 10.1080/01495739.2019.1666694

Google Scholar

[31] S. Alimirzaei, M. Mohammadimehr, A. Tounsi, Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Structural Engineering and Mechanics, 71(5), (2019) 485-502.

DOI: 10.12989/sem.2016.59.3.431

Google Scholar

[32] S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes, Composites: Part B., 57, (2014) 21-24.

DOI: 10.1016/j.compositesb.2013.08.020

Google Scholar

[33] K. Draiche, A.A. Bousahla, A. Tounsi, A.S. Alwabli, A. Tounsi, S.R. Mahmoud, Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory, Computers and Concrete, 24(4), (2019) 369-378.

Google Scholar

[34] M. Abualnour, A. Chikh, H. Hebali, A. Kaci, A. Tounsi, A.A. Bousahla, A. Tounsi, Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory, Computers and Concrete, 24(6), (2019) 489-498.

DOI: 10.12989/scs.2016.22.3.473

Google Scholar

[35] F.Y. Addou, M. Meradjah, A.A Bousahla, A. Benachour, F. Bourada, A. Tounsi, S.R. Mahmoud, Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT, Computers and Concrete, 24(4), (2019) 347-367.

Google Scholar

[36] T. Bensattalah, M. Zidour, T. H. Daouadji & K. Bouakaz, Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix. Structural Engineering and Mechanics, 70(3), (2019) 269-277.

DOI: 10.1007/s11029-016-9606-z

Google Scholar

[37] W.X. Bao, Ch.Ch. Zhu, and W.Zh. Cui, Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics, Physica B, 352, (2004) 156-163.

Google Scholar

[38] J. Z. Liu, Q. S. Zheng, and Q. Jiang, Effect of a rippling mode on resonances of carbon nanotubes, Phys. Rev. Lett, 86, (2001) 4843.

DOI: 10.1103/physrevlett.86.4843

Google Scholar

[39] T. W. Tombler, C. W. Zhou, L. Alexseyev et al., Reversible nanotube electro-echanical characteristics under local probe manipulation, Nature, 405, (2000) 769-772.

DOI: 10.1038/35015519

Google Scholar

[40] Z.C. Tu, and Z.C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number, Phys. Rev. B, 65, (2002) 233407.

DOI: 10.1103/physrevb.65.233407

Google Scholar

[41] Y. Tokio, Recent development of carbon nanotube, Synth Met., 70, (1995) 1511.

Google Scholar

[42] S. Boutaleb, K.H. Benrahou, A. Bakora, A. Algarni, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, A. Tounsi, Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT, Advances in Nano Research, 7(3), (2019) 189-206.

Google Scholar

[43] H. Berghouti, E.A. Adda Bedia, A. Benkhedda, A. Tounsi, Vibration analysis of nonlocal porous nanobeams made of functionally graded material, Advances in Nano Research, 7(5), (2019) 351-364.

Google Scholar

[44] F. Ebrahimi and M. Reza Barati, Buckling Analysis of Nonlocal Embedded Shear Deformable Functionally Graded Piezoelectric Nanoscale Beams, Jordan Journal of Mechanical and Industrial Engineering., 11 (2), (2017) 79 -95.

DOI: 10.1007/s40430-016-0551-5

Google Scholar

[45] A. Semmah, H. Heireche, A.A. Bousahla, A. Tounsi, Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT, Advances in Nano Research, 7(2), (2019) 89-98.

Google Scholar

[46] B. Karami, M. Janghorban and A. Tounsi, Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions, Engineering with Computers, 35, (2019) 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.

DOI: 10.1007/s00366-018-0664-9

Google Scholar

[47] T. Bensattalah, T.H. Daouadji, M. Zidour, A. Tounsi, E. A. Adda Bedia, investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories, Mechanics of Composite Materials, 52 (4), (2016) 785-802.

DOI: 10.1007/s11029-016-9606-z

Google Scholar

[48] N. Belbachir, K. Draich, A.A. Bousahla, M. Bourada, A. Tounsi, M. Mohammadimehr, Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings, Steel and Composite Structures, 33(1), (2019) 913-924.

Google Scholar

[49] F. Sahla, H. Saidi, K. Draiche, A.A. Bousahla, F. Bourada, A. Tounsi, Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel and Composite Structures, 33(5), (2019) 663-679.

DOI: 10.1177/1099636216639000

Google Scholar

[50] Z. Boukhlif, M. Bouremana, F. Bourada, A.A. Bousahla, M. Bourada, A. Tounsi, M.A. Al-Osta, A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation, Steel and Composite Structures, 31(5), (2019) 503-516.

Google Scholar

[51] L. Boulefrakh, H. Hebali, A. Chikh, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate, Geomechanics and Engineering, 18(2), (2019) 161-178.

Google Scholar

[52] L.A. Chaabane, F. Bourada, M. Sekkal, S. Zerouati, F.Z. Zaoui, A. Tounsi, A. Derras, A.A. Bousahla, A. Tounsi, Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation, Structural Engineering and Mechanics, 71(2), (2019) 185-196.

Google Scholar

[53] A. Mahmoudi, S. Benyoucef, A. Tounsi, A. Benachour, E.A. Adda Bedia, S.R. Mahmoud, A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations, Journal of Sandwich Structures and Materials, 21(6), (2019) 1906-1926.

DOI: 10.1177/1099636217727577

Google Scholar

[54] F.Z. Zaoui, D. Ouinas, A. Tounsi, New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations, Compos. Part B, 159, (2019) 231-247.

DOI: 10.1016/j.compositesb.2018.09.051

Google Scholar

[55] C. Y. Wang, C. Q. Ru, and A. Mioduchowski, Axially compressed buckling of pressured multiwall carbon nanotubes, Int. J. Solids Stuct., 40, (2003) 3893.

DOI: 10.1016/s0020-7683(03)00213-0

Google Scholar

[56] L. A. Girifalco, Interaction potential for carbon (C60) molecules, J. Chem. Phys., 95, (1991) 5370.

Google Scholar

[57] L. A. Girifalco, and R. A. Lad, Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System, J. Chem. Phys., 25, (1956) 693.

DOI: 10.1063/1.1743030

Google Scholar

[58] M. Zidour, T. H. Daouadji, K. H. Benrahou, A. Tounsi, E. A. A. Bedia, & L. Hadji, Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory, Mechanics of Composite Materials, 50(1), (2014) 95-104.

DOI: 10.1007/s11029-014-9396-0

Google Scholar