[1]
Blanco, I., Oliveri, L., Cicala, G. et al. Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim 108, 685–693 (2012)
DOI: 10.1007/s10973-011-2095-3
Google Scholar
[2]
Capricho, J.C., Fox, B. and Hameed, N., 2020. Multifunctionality in epoxy resins. Polymer Reviews, 60(1), pp.1-41.
DOI: 10.1080/15583724.2019.1650063
Google Scholar
[3]
Jin, F.L., Li, X. and Park, S.J., 2015. Synthesis and application of epoxy resins: A review. Journal of industrial and engineering chemistry, 29, pp.1-11.
Google Scholar
[4]
T. D. Chang and J. O. Brittain, Studies of epoxy resin systems: Part D: Fracture toughness of an epoxy resin: A study of the effect of crosslinking and sub-Tg aging, Polym. Eng. Sci., 1982, 22, 1228 —1236
DOI: 10.1002/pen.760221809
Google Scholar
[5]
R. A. Pearson and A. F. Yee, Toughening mechanisms in elastomer-modified: Part 3 The effect of cross-link density, Mater. Sci., 1989, 24, 2571 —2580
DOI: 10.1007/bf01174528
Google Scholar
[6]
Garg, A.C. and Mai, Y.W., 1988. Failure mechanisms in toughened epoxy resins—A review. Composites Science and Technology, 31(3), pp.179-223.
DOI: 10.1016/0266-3538(88)90009-7
Google Scholar
[7]
Taloub, N.; Henniche, A.; Liu, L.; Li, J.; Rahoui, N.; Hegazy, M.; Huang, Y. Improving the Mechanical Properties, UV, and Hydrothermal Aging Resistance of PIPD Fiber Using MXene (Ti3C2(OH)2) Nanosheets. Compos. Part B: Eng. 2019, 163, 260–271.
DOI: 10.1016/j.compositesb.2018.11.007
Google Scholar
[8]
Wazalwar, R.; Sahu, M.; Raichur, A.M. Mechanical Properties of Aerospace Epoxy Composites Reinforced with 2D Nano-Fillers: Current Status and Road to Industrialization. Nanoscale Adv. 2021, 3, 2741–2776.
DOI: 10.1039/d1na00050k
Google Scholar
[9]
Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. Part B: Eng. 2021, 226, 109353.
DOI: 10.1016/j.compositesb.2021.109353
Google Scholar
[10]
Rasul, M.G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D Boron Nitride Nanosheets for Polymer Composite Materials. npj 2d Mater. Appl. 2021, 5, 56.
DOI: 10.1038/s41699-021-00231-2
Google Scholar
[11]
Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-Containing Flame-Retardant Epoxy Thermosets: Recent Advances and Future Perspectives. Prog. Polym. Sci. (2021)
DOI: 10.1016/j.progpolymsci.2021.101366
Google Scholar
[12]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.
DOI: 10.1002/adma.201102306
Google Scholar
[13]
Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393.
DOI: 10.1002/adma.202170303
Google Scholar
[14]
Sun, S.; Liao, C.; Hafez, A.M.; Zhu, H.; Wu, S. Two-Dimensional MXenes for Energy Storage. Chem. Eng. J. 2018, 338, 27–45.
DOI: 10.1016/j.cej.2017.12.155
Google Scholar
[15]
Sun, Y.; Li, Y. Potential Environmental Applications of MXenes: A Critical Review. Chemosphere 2021, 271, 129578.
DOI: 10.1016/j.chemosphere.2021.129578
Google Scholar
[16]
Song, P.; Liu, B.; Qiu, H.; Shi, X.; Cao, D.; Gu, J. MXenes for Polymer Matrix Electromagnetic Interference Shielding Composites: A Review. Compos. Commun. 2021, 24, 100653.
DOI: 10.1016/j.coco.2021.100653
Google Scholar
[17]
Janjua, A.A., Younas, M., Ilyas, R.A., Shyha, I., Faisal, N.H., Inam, F. and Saharudin, M.S., 2024. Optimizing DMF Utilization for Improved MXene Dispersions in Epoxy Nanocomposites. Journal of composites science, 8(9), p.340.
DOI: 10.3390/jcs8090340
Google Scholar
[18]
Zhang, H.; Wang, L.; Zhou, A.; Shen, C.; Dai, Y.; Liu, F.; Chen, J.; Li, P.; Hu, Q. Effects of 2-D Transition Metal Carbide Ti2CT:X on Properties of Epoxy Composites. RSC Adv. 2016, 6, 87341–87352.
DOI: 10.1039/c6ra14560d
Google Scholar
[19]
Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B: Eng. 2019, 171, 111–118.
DOI: 10.1016/j.compositesb.2019.04.050
Google Scholar
[20]
Hatter, C.B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical Response of Two-Dimensional Transition Metal Carbonitride (MXene) Reinforced Epoxy Composites. Compos. Part B Eng. 2020, 182, 107603.
DOI: 10.1016/j.compositesb.2019.107603
Google Scholar
[21]
Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B: Eng. 2019, 171, 111–118.
DOI: 10.1016/j.compositesb.2019.04.050
Google Scholar
[22]
Hatter, C.B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical Response of Two-Dimensional Transition Metal Carbonitride (MXene) Reinforced Epoxy Composites. Compos. Part B Eng. 2020, 182, 107603
DOI: 10.1016/j.compositesb.2019.107603
Google Scholar
[23]
Saharudin, M.S., Che Nasir, N.A. and Hasbi, S., 2022. Tensile and corrosion resistance studies of MXenes/nanocomposites: a review. Design in Maritime Engineering: Contributions from the ICMAT 2021, pp.189-198.
DOI: 10.1007/978-3-030-89988-2_14
Google Scholar
[24]
Al-Fakih, G.O., Ilyas, R.A., Atiqah, A., Atikah, M.S.N., Saidur, R., Dufresne, A., Saharudin, M.S., Abral, H. and Sapuan, S.M., 2024. Advanced functional materials based on nanocellulose/Mxene: A review. International journal of biological macromolecules, p.135207.
DOI: 10.1016/j.ijbiomac.2024.135207
Google Scholar
[25]
Saharudin, M.S., Ilyas, R.A., Awang, N., Hasbi, S., Shyha, I. and Inam, F., 2023. Advances in sustainable nanocomposites. Sustainability, 15(6), p.5125.
DOI: 10.3390/su15065125
Google Scholar
[26]
Saharudin, M.S., Ayub, A., Hasbi, S., Muhammad-Sukki, F., Shyha, I. and Inam, F., 2023. Recent advances in MXene composites research, applications and opportunities. Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2023.02.435
Google Scholar