Enhancing Epoxy Polymer Composites with Mxene Nanosheets for Improved Thermal Performance

Article Preview

Abstract:

Thermosetting epoxy polymers are widely employed as matrices for fabricating fibre-reinforced composites due to their exceptional strength and stiffness. However, the inherent brittleness of epoxy and its generally low fracture toughness impose limitations on their utilization in high-end applications. To address this challenge, the incorporation of micro-and nanoscale fillers emerges as a promising strategy for enhancing the durability of epoxy. MXene belonging to a versatile family of 2D transition-metal carbides, carbonitrides, and nitrides, offer superior physical and mechanical characteristics, making them ideal candidates for creating multifunctional polymer nanocomposites. In this study, MXene nanosheets (specifically Ti3C2Tx) were introduced at concentrations ranging from 0.1% to 0.5% by weight, and their dispersion in the epoxy-hardener mixture was achieved through ultrasonication. Remarkably, the incorporation of 0.5 wt. % MXene led to an 8°C increase in the glass transition (Tg) temperature and a 5°C elevation in the crystallisation temperature at 0.3 wt. % loadings. However, at higher MXene concentrations, these values exhibited a decrease. Overall, the mechanical characteristics of the nanocomposites demonstrated improvement. This enhancement is attributed to the effective distribution of MXene within the epoxy matrix, contributing to an overall enhancement of the material's properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-109

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Blanco, I., Oliveri, L., Cicala, G. et al. Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim 108, 685–693 (2012)

DOI: 10.1007/s10973-011-2095-3

Google Scholar

[2] Capricho, J.C., Fox, B. and Hameed, N., 2020. Multifunctionality in epoxy resins. Polymer Reviews, 60(1), pp.1-41.

DOI: 10.1080/15583724.2019.1650063

Google Scholar

[3] Jin, F.L., Li, X. and Park, S.J., 2015. Synthesis and application of epoxy resins: A review. Journal of industrial and engineering chemistry, 29, pp.1-11.

Google Scholar

[4] T. D. Chang and J. O. Brittain, Studies of epoxy resin systems: Part D: Fracture toughness of an epoxy resin: A study of the effect of crosslinking and sub-Tg aging, Polym. Eng. Sci., 1982, 22, 1228 —1236

DOI: 10.1002/pen.760221809

Google Scholar

[5] R. A. Pearson and A. F. Yee, Toughening mechanisms in elastomer-modified: Part 3 The effect of cross-link density, Mater. Sci., 1989, 24, 2571 —2580

DOI: 10.1007/bf01174528

Google Scholar

[6] Garg, A.C. and Mai, Y.W., 1988. Failure mechanisms in toughened epoxy resins—A review. Composites Science and Technology, 31(3), pp.179-223.

DOI: 10.1016/0266-3538(88)90009-7

Google Scholar

[7] Taloub, N.; Henniche, A.; Liu, L.; Li, J.; Rahoui, N.; Hegazy, M.; Huang, Y. Improving the Mechanical Properties, UV, and Hydrothermal Aging Resistance of PIPD Fiber Using MXene (Ti3C2(OH)2) Nanosheets. Compos. Part B: Eng. 2019, 163, 260–271.

DOI: 10.1016/j.compositesb.2018.11.007

Google Scholar

[8] Wazalwar, R.; Sahu, M.; Raichur, A.M. Mechanical Properties of Aerospace Epoxy Composites Reinforced with 2D Nano-Fillers: Current Status and Road to Industrialization. Nanoscale Adv. 2021, 3, 2741–2776.

DOI: 10.1039/d1na00050k

Google Scholar

[9] Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. Part B: Eng. 2021, 226, 109353.

DOI: 10.1016/j.compositesb.2021.109353

Google Scholar

[10] Rasul, M.G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D Boron Nitride Nanosheets for Polymer Composite Materials. npj 2d Mater. Appl. 2021, 5, 56.

DOI: 10.1038/s41699-021-00231-2

Google Scholar

[11] Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-Containing Flame-Retardant Epoxy Thermosets: Recent Advances and Future Perspectives. Prog. Polym. Sci. (2021)

DOI: 10.1016/j.progpolymsci.2021.101366

Google Scholar

[12] Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

DOI: 10.1002/adma.201102306

Google Scholar

[13] Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393.

DOI: 10.1002/adma.202170303

Google Scholar

[14] Sun, S.; Liao, C.; Hafez, A.M.; Zhu, H.; Wu, S. Two-Dimensional MXenes for Energy Storage. Chem. Eng. J. 2018, 338, 27–45.

DOI: 10.1016/j.cej.2017.12.155

Google Scholar

[15] Sun, Y.; Li, Y. Potential Environmental Applications of MXenes: A Critical Review. Chemosphere 2021, 271, 129578.

DOI: 10.1016/j.chemosphere.2021.129578

Google Scholar

[16] Song, P.; Liu, B.; Qiu, H.; Shi, X.; Cao, D.; Gu, J. MXenes for Polymer Matrix Electromagnetic Interference Shielding Composites: A Review. Compos. Commun. 2021, 24, 100653.

DOI: 10.1016/j.coco.2021.100653

Google Scholar

[17] Janjua, A.A., Younas, M., Ilyas, R.A., Shyha, I., Faisal, N.H., Inam, F. and Saharudin, M.S., 2024. Optimizing DMF Utilization for Improved MXene Dispersions in Epoxy Nanocomposites. Journal of composites science, 8(9), p.340.

DOI: 10.3390/jcs8090340

Google Scholar

[18] Zhang, H.; Wang, L.; Zhou, A.; Shen, C.; Dai, Y.; Liu, F.; Chen, J.; Li, P.; Hu, Q. Effects of 2-D Transition Metal Carbide Ti2CT:X on Properties of Epoxy Composites. RSC Adv. 2016, 6, 87341–87352.

DOI: 10.1039/c6ra14560d

Google Scholar

[19] Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B: Eng. 2019, 171, 111–118.

DOI: 10.1016/j.compositesb.2019.04.050

Google Scholar

[20] Hatter, C.B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical Response of Two-Dimensional Transition Metal Carbonitride (MXene) Reinforced Epoxy Composites. Compos. Part B Eng. 2020, 182, 107603.

DOI: 10.1016/j.compositesb.2019.107603

Google Scholar

[21] Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B: Eng. 2019, 171, 111–118.

DOI: 10.1016/j.compositesb.2019.04.050

Google Scholar

[22] Hatter, C.B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical Response of Two-Dimensional Transition Metal Carbonitride (MXene) Reinforced Epoxy Composites. Compos. Part B Eng. 2020, 182, 107603

DOI: 10.1016/j.compositesb.2019.107603

Google Scholar

[23] Saharudin, M.S., Che Nasir, N.A. and Hasbi, S., 2022. Tensile and corrosion resistance studies of MXenes/nanocomposites: a review. Design in Maritime Engineering: Contributions from the ICMAT 2021, pp.189-198.

DOI: 10.1007/978-3-030-89988-2_14

Google Scholar

[24] Al-Fakih, G.O., Ilyas, R.A., Atiqah, A., Atikah, M.S.N., Saidur, R., Dufresne, A., Saharudin, M.S., Abral, H. and Sapuan, S.M., 2024. Advanced functional materials based on nanocellulose/Mxene: A review. International journal of biological macromolecules, p.135207.

DOI: 10.1016/j.ijbiomac.2024.135207

Google Scholar

[25] Saharudin, M.S., Ilyas, R.A., Awang, N., Hasbi, S., Shyha, I. and Inam, F., 2023. Advances in sustainable nanocomposites. Sustainability, 15(6), p.5125.

DOI: 10.3390/su15065125

Google Scholar

[26] Saharudin, M.S., Ayub, A., Hasbi, S., Muhammad-Sukki, F., Shyha, I. and Inam, F., 2023. Recent advances in MXene composites research, applications and opportunities. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2023.02.435

Google Scholar