[1]
A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater 6 (2007) 183–191.
Google Scholar
[2]
N. Boulanger, A.S. Kuzenkova, A. Iakunkov, A. Nordenström, A.Yu. Romanchuk, A.L. Trigub, P.V. Zasimov, M. Prodana, M. Enachescu, S. Bauters, L. Amidani, K.O. Kvashnina, S.N. Kalmykov, A.V. Talyzin, High Surface Area "3D Graphene Oxide" for Enhanced Sorption of Radionuclides, Advanced Materials Interfaces 9 (2022) 2200510.
DOI: 10.1002/admi.202200510
Google Scholar
[3]
Ş. Taşdemir, Z.G. Morçimen, A.A. Doğan, C. Görgün, A. Şendemir, Surface Area of Graphene Governs Its Neurotoxicity, ACS Biomater. Sci. Eng. 9 (2023) 3297–3305.
DOI: 10.1021/acsbiomaterials.3c00104
Google Scholar
[4]
S.J. Lee, S.J. Yoon, I.-Y. Jeon, Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application, Polymers 14 (2022) 4733.
DOI: 10.3390/polym14214733
Google Scholar
[5]
S. Mondal, S. Ghosh, Negative contribution from defects responsible for low Young's modulus of graphene oxide at small defect densities, Phys. Chem. Chem. Phys. (2024).
DOI: 10.1039/d4cp03522d
Google Scholar
[6]
B.R. Reddivari, S. Vadapalli, B. Sanduru, T. Buddi, K.M. Vafaeva, A. Joshi, Fabrication and mechanical properties of hybrid fibre-reinforced polymer hybrid composite with graphene nanoplatelets and multiwalled carbon nanotubes, Cogent Engineering 11 (2024) 2343586.
DOI: 10.1080/23311916.2024.2343586
Google Scholar
[7]
S. Jaddi, M.W. Malik, B. Wang, N.M. Pugno, Y. Zeng, M. Coulombier, J.-P. Raskin, T. Pardoen, Definitive engineering strength and fracture toughness of graphene through on-chip nanomechanics, Nat Commun 15 (2024) 5863.
DOI: 10.1038/s41467-024-49426-3
Google Scholar
[8]
X. Li, Y. Tong, Z. Yin, H. Jia, X. Yan, X. Guo, S. Lei, L. Gao, J. Liu, Z. Tao, Z. Liu, Revealing synergistic relationship of thermal conduction and electromagnetic shielding of reduced graphene oxide film, Materials Chemistry and Physics 329 (2025) 130092.
DOI: 10.1016/j.matchemphys.2024.130092
Google Scholar
[9]
O. Braun, R. Furrer, P. Butti, K. Thodkar, I. Shorubalko, I. Zardo, M. Calame, M.L. Perrin, Spatially mapping thermal transport in graphene by an opto-thermal method, Npj 2D Mater Appl 6 (2022) 1–7.
DOI: 10.1038/s41699-021-00277-2
Google Scholar
[10]
L.A. Ponomarenko, A. Principi, A.D. Niblett, W. Wang, R.V. Gorbachev, P. Kumaravadivel, A.I. Berdyugin, A.V. Ermakov, S. Slizovskiy, K. Watanabe, T. Taniguchi, Q. Ge, V.I. Fal'ko, L. Eaves, M.T. Greenaway, A.K. Geim, Extreme electron–hole drag and negative mobility in the Dirac plasma of graphene, Nat Commun 15 (2024) 9869.
DOI: 10.1038/s41467-024-54198-x
Google Scholar
[11]
X. He, W. Zhou, Hydrophobic modification and durability protection of cotton garment fabric surfaces by graphene oxide/PGMA composite coatings, Sci Rep 14 (2024) 30174.
DOI: 10.1038/s41598-024-71736-1
Google Scholar
[12]
M. Fatkullin, D. Cheshev, A. Averkiev, A. Gorbunova, G. Murastov, J. Liu, P. Postnikov, C. Cheng, R.D. Rodriguez, E. Sheremet, Photochemistry dominates over photothermal effects in the laser-induced reduction of graphene oxide by visible light, Nat Commun 15 (2024) 9711.
DOI: 10.1038/s41467-024-53503-y
Google Scholar
[13]
M. Zhu, Y. Zhang, S. Xu, X. Yan, Y. Song, M. Wang, Y. Dong, J. Zhang, Enhanced lithium-sulfur battery eilectrochemistry via Se-doped MoS2/rGO ultrathin sheets as sulfur hosts, Applied Surface Science 682 (2025) 161718.
DOI: 10.1016/j.apsusc.2024.161718
Google Scholar
[14]
S. Kamesh, S. Harish, H. Ikeda, M. Navaneethan, J. Archana, Designing ternary 2D/2D nitrogen-enriched porous g-C3N4/rGO embedded in zinc cobaltite as efficient triiodide reduction for a platinum-free counter electrode in dye-sensitized solar cell applications, Electrochimica Acta 512 (2025) 145370.
DOI: 10.1016/j.electacta.2024.145370
Google Scholar
[15]
T. Liu, C. Han, S. Wang, Y. Ou, X. Zhang, S. Zhang, Q. Song, Y. Du, F. Wang, Y. Wang, Embedding thermostable rGO/SiCxOy composite phase in SiC fibers for improved high temperature resistance, Carbon 233 (2025) 119858.
DOI: 10.1016/j.carbon.2024.119858
Google Scholar
[16]
S.R. Shingte, A.M. Patil, S. Gemming, D.R.T. Zahn, T.D. Dongale, S.C. Jun, G. Salvan, P.B. Patil, The power trio: CoS-CoFe2O4-rGO ternary composite to enhance energy density of all-solid-state asymmetric supercapacitors, Journal of Energy Storage 106 (2025) 114842.
DOI: 10.1016/j.est.2024.114842
Google Scholar
[17]
Q. Li, L. Liu, H. Kimura, A.M. Fallatah, H. Qiu, G.A.M. Mersal, R. Ren, A.S. Almalki, N. Wu, X. Sun, W. Du, Z. Guo, C. Hou, Interfacical polarization dominant rGO aerogel decorated with molybdenum sulfide towards lightweight and high-performance electromagnetic wave absorber, Carbon 231 (2025) 119738.
DOI: 10.1016/j.carbon.2024.119738
Google Scholar
[18]
K. Ge, H. Shao, E. Raymundo-Piñero, P.-L. Taberna, P. Simon, Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO), Nat Commun 15 (2024) 1935.
DOI: 10.1038/s41467-024-46280-1
Google Scholar
[19]
G.V. Dilwale, G. Piao, H. Kim, A.C. Pawar, Z. Said, R.K. Nimat, J.M. Kim, R.N. Bulakhe, Chemical route synthesis of nanohybrid MoO3-rGO for high-performance hybrid supercapacitors, Journal of Energy Storage 91 (2024) 112050.
DOI: 10.1016/j.est.2024.112050
Google Scholar
[20]
M. Manikandan, T. Prasankumar, E. Manikandan, E. Papanasam, K. Ramesh, S. Ramesh, Hydrothermal synthesis of rGO and MnCoS composite for enhanced supercapacitor application, Sci Rep 14 (2024) 25596.
DOI: 10.1038/s41598-024-77245-5
Google Scholar
[21]
J.K. Jadoon, P.V. Pham, Hybrid TiO2–RGO nanocomposite as high specific capacitance electrode for supercapacitor, Nanotechnology 35 (2024) 435706.
DOI: 10.1088/1361-6528/ad6a6a
Google Scholar
[22]
D. Kadadou, L. Tizani, V.S. Wadi, F. Banat, V. Naddeo, H. Alsafar, A.F. Yousef, S.W. Hasan, Optimization of an rGO-based biosensor for the sensitive detection of bovine serum albumin: Effect of electric field on detection capability, Chemosphere 301 (2022) 134700.
DOI: 10.1016/j.chemosphere.2022.134700
Google Scholar
[23]
X. Chen, X. Yan, J. Qiu, X. Zhang, Y. Zhang, H. Zhou, Y. Zhao, L. Han, Y. Zhang, An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection, Sens. Diagn. 3 (2024) 1724–1732.
DOI: 10.1039/d4sd00181h
Google Scholar
[24]
P. Ranjan, R. Khan, Impedimetric Biosensor of Silver Molybdate Anchored on rGO Sheet for Detection of Breast Cancer Mucin-1 Biomarker, ChemistrySelect 9 (2024) e202403162.
DOI: 10.1002/slct.202403162
Google Scholar
[25]
Y. Xu, E. Liu, Graphene: Two decades of revolutionizing material science, TIMS 2 (2024) 100059–2.
DOI: 10.59717/j.xinn-mater.2024.100059
Google Scholar
[26]
M. Civas, M. Kuscu, O. Cetinkaya, B.E. Ortlek, O.B. Akan, Graphene and related materials for the Internet of Bio-Nano Things, APL Materials 11 (2023) 080901.
DOI: 10.1063/5.0153423
Google Scholar
[27]
A. Baruah, R. Newar, S. Das, N. Kalita, M. Nath, P. Ghosh, S. Chinnam, H. Sarma, M. Narayan, Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors, Discover Nano 19 (2024) 103.
DOI: 10.1186/s11671-024-04032-6
Google Scholar
[28]
L. Destiarti, R. Riyanto, R. Roto, M. Mudasir, Facile synthesis of reduced graphene oxide using Caesalpinia sappan L. extract as green reducing agent, Next Materials 2 (2024) 100134.
DOI: 10.1016/j.nxmate.2024.100134
Google Scholar
[29]
L.G.P. Tienne, L. da S. Candido, B. de S.M. da Cruz, F.F. Gondim, M.P. Ribeiro, R.A. Simão, M. de F.V. Marques, S.N. Monteiro, Reduced graphene oxide synthesized by a new modified Hummer's method for enhancing thermal and crystallinity properties of Poly(vinylidene fluoride), Journal of Materials Research and Technology 18 (2022) 4871–4893.
DOI: 10.1016/j.jmrt.2022.04.092
Google Scholar
[30]
J.-W. Hsueh, L.-H. Kuo, P.-H. Chen, W.-H. Chen, C.-Y. Chuang, C.-N. Kuo, C.-S. Lue, Y.-L. Lai, B.-H. Liu, C.-H. Wang, Y.-J. Hsu, C.-L. Lin, J.-P. Chou, M.-F. Luo, Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition, Nat Commun 15 (2024) 653.
DOI: 10.1038/s41467-024-44840-z
Google Scholar
[31]
S. Ravichandran, S. Hao, W. Zhang, CeO2-supported Pt nanoclusters for improved electrochemical oxidation of methanol, Carbon Res. 3 (2024) 21.
DOI: 10.1007/s44246-023-00091-z
Google Scholar
[32]
Y. Zhang, Y. Zhang, R. Jamal, S. Xie, A. Abdurexit, T. Abdiryim, H. Yang, K. Song, Polythiophene-coated carbon nano boxes for efficient platinum-based catalysts for methanol electrooxidation, Journal of Colloid and Interface Science 675 (2024) 24–35.
DOI: 10.1016/j.jcis.2024.06.247
Google Scholar
[33]
O. Baytar, Ö. Şahin, A. Ekinci, Effect of environmentally friendly and efficient metal-free hydrochars as catalysts on sodium borohydride hydrolysis, Fuel 346 (2023) 128308.
DOI: 10.1016/j.fuel.2023.128308
Google Scholar
[34]
J. Cui, X. Liu, F. Qie, C. Xie, Q. He, J. Liu, S.L. Suib, W. Wang, Multiple interface coupling on natural tourmaline enables high-efficiency removal of antibiotic: Superior property and mechanism, Journal of Environmental Sciences 140 (2024) 242–254.
DOI: 10.1016/j.jes.2023.08.010
Google Scholar
[35]
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi, W. Wei, Y. Liu, R. Zheng, N. Han, B.-J. Ni, Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy, Nano-Micro Lett. 15 (2022) 4.
DOI: 10.1007/s40820-022-00974-7
Google Scholar
[36]
Y.B. Rus, Y. Qu, M. Bosmi, L. Galmiche, P. Audebert, F. Miomandre, Efficient functionalization of reduced graphene oxide by 3-(pyridin-2-yl)-1,2,4,5-tetrazine and design of hybrids with silver nanoparticles for electrocatalysis, Materials Chemistry and Physics 291 (2022) 126607.
DOI: 10.1016/j.matchemphys.2022.126607
Google Scholar
[37]
Y. Xu, D. Wu, Q. Zhang, P. Rao, P. Deng, M. Tang, J. Li, Y. Hua, C. Wang, S. Zhong, C. Jia, Z. Liu, Y. Shen, L. Gu, X. Tian, Q. Liu, Regulating Au coverage for the direct oxidation of methane to methanol, Nat Commun 15 (2024) 564.
DOI: 10.1038/s41467-024-44839-6
Google Scholar
[38]
J. Hou, J.A. Lartey, C.Y. Lee, J.-H. Kim, Light-enhanced catalytic activity of stable and large gold nanoparticles in homocoupling reactions, Sci Rep 14 (2024) 1352.
DOI: 10.1038/s41598-024-51695-3
Google Scholar
[39]
C. Liang, J.Y. Cheong, G. Sitaru, S. Rosenfeldt, A.S. Schenk, S. Gekle, I.-D. Kim, A. Greiner, Size-Dependent Catalytic Behavior of Gold Nanoparticles, Advanced Materials Interfaces 9 (2022) 2100867.
DOI: 10.1002/admi.202100867
Google Scholar
[40]
D. Votkina, A. Trelin, V. Semin, O. Lyutakov, V. Svorcik, P. Petunin, G. Audran, S.R.A. Marque, O. Guselnikova, P. Postnikov, Size-dependent plasmonic activity of AuNPs for the rational design of catalysts for organic reactions, Catal. Sci. Technol. 14 (2024) 3707–3718.
DOI: 10.1039/d4cy00084f
Google Scholar
[41]
M.G. Ellis, U. Pant, J. Lou-Franco, N. Logan, C. Cao, Directed Assembly of Au Nanostar@Ag Satellite Nanostructures for SERS-Based Sensing of Hg2+ Ions, ACS Appl. Nano Mater. 6 (2023) 10431–10440.
DOI: 10.1021/acsanm.3c01382
Google Scholar
[42]
M.B. Askari, P. Salarizadeh, M.H. Ramezan zadeh, MoO3/WO3/rGO as electrode material for supercapacitor and catalyst for methanol and ethanol electrooxidation, Sci Rep 14 (2024) 9907.
DOI: 10.1038/s41598-024-59018-2
Google Scholar
[43]
C. Wang, D. Astruc, Recent developments of metallic nanoparticle-graphene nanocatalysts, Progress in Materials Science 94 (2018) 306–383.
DOI: 10.1016/j.pmatsci.2018.01.003
Google Scholar
[44]
X. Liu, Y. Sui, T. Duan, C. Meng, Y. Han, CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation, Phys. Chem. Chem. Phys. 16 (2014) 23584–23593.
DOI: 10.1039/c4cp02106a
Google Scholar
[45]
Y.B. Rus, L. Galmiche, P. Audebert, A. Courty, E. Maisonhaute, F. Miomandre, Electrodeposition of Silver Nanoparticles on Reduced Graphene Functionalized by Pyridine-Pyridazine Units: Application to Surface-Enhanced Raman Spectroscopy and Electrocatalysis, ChemistrySelect 4 (2019) 1298–1305.
DOI: 10.1002/slct.201802130
Google Scholar
[46]
Y. Bin Rus, M. Bosmi, S. Maisonneuve, V. Guérineau, V. Noël, A. Courty, F. Miomandre, Versatile one-pot synthesis of gold nanoclusters and nanoparticles using 3,6-(dipyridin-2-yl)-(1,2,4,5)-tetrazine, RSC Advances 11 (2021) 7043–7050.
DOI: 10.1039/d0ra10961d
Google Scholar
[47]
W. Zhang, H. Xu, F. Xie, X. Ma, B. Niu, M. Chen, H. Zhang, Y. Zhang, D. Long, General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane, Nat Commun 13 (2022) 471.
DOI: 10.1038/s41467-022-28180-4
Google Scholar
[48]
A. Gautam, H. Dabral, A. Singh, S. Tyagi, N. Tyagi, D. Srivastava, H.R. Kushwaha, A. Singh, Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review, Biomater. Sci. 12 (2024) 4630–4649.
DOI: 10.1039/d4bm00796d
Google Scholar
[49]
J. Sengupta, Different Synthesis Routes of Graphene-Based Metal Nanocomposites, in: C.M. Hussain, S. Thomas (Eds.), Handbook of Polymer and Ceramic Nanotechnology, Springer International Publishing, Cham, 2021: p.1035–1051.
DOI: 10.1007/978-3-030-40513-7_30
Google Scholar
[50]
Y.B. Rus, L. Galmiche, P. Audebert, F. Miomandre, Influence of the electrolytic medium on the performance and stability of functionalized graphene-polypyrrole nanocomposites as materials for supercapacitors, Synthetic Metals 254 (2019) 22–28.
DOI: 10.1016/j.synthmet.2019.05.011
Google Scholar
[51]
R. Yahdi Bin, Nanocomposites à base de graphène fonctionnalisé pour le stockage de l'énergie et la catalyse, Dissertation, [Thesis, Université Paris-Saclay (ComUE)], 2019b. http://www.theses.fr/2019SACLN068.
Google Scholar
[52]
P.A. Mikhaylov, M.I. Vinogradov, I.S. Levin, G.A. Shandryuk, A.V. Lubenchenko, V.G. Kulichikhin, Synthesis and characterization of polyethylene terephthalate-reduced graphene oxide composites, IOP Conf. Ser.: Mater. Sci. Eng. 693 (2019) 012036.
DOI: 10.1088/1757-899x/693/1/012036
Google Scholar