Efficient One-Step Synthesis of Gold Nanoparticles Supported on Reduced Graphene Oxide for Methanol Oxidation Reaction Catalyst in Alkaline Electrolyte

Article Preview

Abstract:

This study explores the utility of reduced graphene oxide (rGO) as a support material for gold nanoparticles (AuNPs) synthesized via an economically efficient and environmentally friendly electrochemical deposition method conducted at room temperature. Employing a chronoamperometry (CA) method, we successfully synthesize AuNPs in aqueous solutions without additional stabilizing agents. We investigate the influence of substrate and electrodeposition duration on the growth of AuNPs, on indium tin oxide glass substrates and rGO, with electrodeposition durations for comparison. This research highlights the straightforward and rapid one-step synthesis of AuNPs in an aqueous medium and explores the correlation between Au particle size and electrocatalytic performance. We evaluate the electrochemical performance of rGO-supported AuNPs in the context of methanol oxidation reaction (MOR) using cyclic voltammetry in an aqueous medium with an alkaline electrolyte. Notably, AuNPs supported by rGO, featuring an average particle size of 46 nm, exhibit superior electrochemical performance compared to their counterparts with an average particle size of 165 nm when employed as catalysts for the MOR. This superior performance is characterized by a 15 mV more negative oxidation potential (54 mv compared to 39 mV) and over 2.5 times higher oxidation peak current (0.064 mA compared to 0.025 mA), underscoring their efficiency as electrocatalysts for MOR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-63

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater 6 (2007) 183–191.

Google Scholar

[2] N. Boulanger, A.S. Kuzenkova, A. Iakunkov, A. Nordenström, A.Yu. Romanchuk, A.L. Trigub, P.V. Zasimov, M. Prodana, M. Enachescu, S. Bauters, L. Amidani, K.O. Kvashnina, S.N. Kalmykov, A.V. Talyzin, High Surface Area "3D Graphene Oxide" for Enhanced Sorption of Radionuclides, Advanced Materials Interfaces 9 (2022) 2200510.

DOI: 10.1002/admi.202200510

Google Scholar

[3] Ş. Taşdemir, Z.G. Morçimen, A.A. Doğan, C. Görgün, A. Şendemir, Surface Area of Graphene Governs Its Neurotoxicity, ACS Biomater. Sci. Eng. 9 (2023) 3297–3305.

DOI: 10.1021/acsbiomaterials.3c00104

Google Scholar

[4] S.J. Lee, S.J. Yoon, I.-Y. Jeon, Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application, Polymers 14 (2022) 4733.

DOI: 10.3390/polym14214733

Google Scholar

[5] S. Mondal, S. Ghosh, Negative contribution from defects responsible for low Young's modulus of graphene oxide at small defect densities, Phys. Chem. Chem. Phys. (2024).

DOI: 10.1039/d4cp03522d

Google Scholar

[6] B.R. Reddivari, S. Vadapalli, B. Sanduru, T. Buddi, K.M. Vafaeva, A. Joshi, Fabrication and mechanical properties of hybrid fibre-reinforced polymer hybrid composite with graphene nanoplatelets and multiwalled carbon nanotubes, Cogent Engineering 11 (2024) 2343586.

DOI: 10.1080/23311916.2024.2343586

Google Scholar

[7] S. Jaddi, M.W. Malik, B. Wang, N.M. Pugno, Y. Zeng, M. Coulombier, J.-P. Raskin, T. Pardoen, Definitive engineering strength and fracture toughness of graphene through on-chip nanomechanics, Nat Commun 15 (2024) 5863.

DOI: 10.1038/s41467-024-49426-3

Google Scholar

[8] X. Li, Y. Tong, Z. Yin, H. Jia, X. Yan, X. Guo, S. Lei, L. Gao, J. Liu, Z. Tao, Z. Liu, Revealing synergistic relationship of thermal conduction and electromagnetic shielding of reduced graphene oxide film, Materials Chemistry and Physics 329 (2025) 130092.

DOI: 10.1016/j.matchemphys.2024.130092

Google Scholar

[9] O. Braun, R. Furrer, P. Butti, K. Thodkar, I. Shorubalko, I. Zardo, M. Calame, M.L. Perrin, Spatially mapping thermal transport in graphene by an opto-thermal method, Npj 2D Mater Appl 6 (2022) 1–7.

DOI: 10.1038/s41699-021-00277-2

Google Scholar

[10] L.A. Ponomarenko, A. Principi, A.D. Niblett, W. Wang, R.V. Gorbachev, P. Kumaravadivel, A.I. Berdyugin, A.V. Ermakov, S. Slizovskiy, K. Watanabe, T. Taniguchi, Q. Ge, V.I. Fal'ko, L. Eaves, M.T. Greenaway, A.K. Geim, Extreme electron–hole drag and negative mobility in the Dirac plasma of graphene, Nat Commun 15 (2024) 9869.

DOI: 10.1038/s41467-024-54198-x

Google Scholar

[11] X. He, W. Zhou, Hydrophobic modification and durability protection of cotton garment fabric surfaces by graphene oxide/PGMA composite coatings, Sci Rep 14 (2024) 30174.

DOI: 10.1038/s41598-024-71736-1

Google Scholar

[12] M. Fatkullin, D. Cheshev, A. Averkiev, A. Gorbunova, G. Murastov, J. Liu, P. Postnikov, C. Cheng, R.D. Rodriguez, E. Sheremet, Photochemistry dominates over photothermal effects in the laser-induced reduction of graphene oxide by visible light, Nat Commun 15 (2024) 9711.

DOI: 10.1038/s41467-024-53503-y

Google Scholar

[13] M. Zhu, Y. Zhang, S. Xu, X. Yan, Y. Song, M. Wang, Y. Dong, J. Zhang, Enhanced lithium-sulfur battery eilectrochemistry via Se-doped MoS2/rGO ultrathin sheets as sulfur hosts, Applied Surface Science 682 (2025) 161718.

DOI: 10.1016/j.apsusc.2024.161718

Google Scholar

[14] S. Kamesh, S. Harish, H. Ikeda, M. Navaneethan, J. Archana, Designing ternary 2D/2D nitrogen-enriched porous g-C3N4/rGO embedded in zinc cobaltite as efficient triiodide reduction for a platinum-free counter electrode in dye-sensitized solar cell applications, Electrochimica Acta 512 (2025) 145370.

DOI: 10.1016/j.electacta.2024.145370

Google Scholar

[15] T. Liu, C. Han, S. Wang, Y. Ou, X. Zhang, S. Zhang, Q. Song, Y. Du, F. Wang, Y. Wang, Embedding thermostable rGO/SiCxOy composite phase in SiC fibers for improved high temperature resistance, Carbon 233 (2025) 119858.

DOI: 10.1016/j.carbon.2024.119858

Google Scholar

[16] S.R. Shingte, A.M. Patil, S. Gemming, D.R.T. Zahn, T.D. Dongale, S.C. Jun, G. Salvan, P.B. Patil, The power trio: CoS-CoFe2O4-rGO ternary composite to enhance energy density of all-solid-state asymmetric supercapacitors, Journal of Energy Storage 106 (2025) 114842.

DOI: 10.1016/j.est.2024.114842

Google Scholar

[17] Q. Li, L. Liu, H. Kimura, A.M. Fallatah, H. Qiu, G.A.M. Mersal, R. Ren, A.S. Almalki, N. Wu, X. Sun, W. Du, Z. Guo, C. Hou, Interfacical polarization dominant rGO aerogel decorated with molybdenum sulfide towards lightweight and high-performance electromagnetic wave absorber, Carbon 231 (2025) 119738.

DOI: 10.1016/j.carbon.2024.119738

Google Scholar

[18] K. Ge, H. Shao, E. Raymundo-Piñero, P.-L. Taberna, P. Simon, Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO), Nat Commun 15 (2024) 1935.

DOI: 10.1038/s41467-024-46280-1

Google Scholar

[19] G.V. Dilwale, G. Piao, H. Kim, A.C. Pawar, Z. Said, R.K. Nimat, J.M. Kim, R.N. Bulakhe, Chemical route synthesis of nanohybrid MoO3-rGO for high-performance hybrid supercapacitors, Journal of Energy Storage 91 (2024) 112050.

DOI: 10.1016/j.est.2024.112050

Google Scholar

[20] M. Manikandan, T. Prasankumar, E. Manikandan, E. Papanasam, K. Ramesh, S. Ramesh, Hydrothermal synthesis of rGO and MnCoS composite for enhanced supercapacitor application, Sci Rep 14 (2024) 25596.

DOI: 10.1038/s41598-024-77245-5

Google Scholar

[21] J.K. Jadoon, P.V. Pham, Hybrid TiO2–RGO nanocomposite as high specific capacitance electrode for supercapacitor, Nanotechnology 35 (2024) 435706.

DOI: 10.1088/1361-6528/ad6a6a

Google Scholar

[22] D. Kadadou, L. Tizani, V.S. Wadi, F. Banat, V. Naddeo, H. Alsafar, A.F. Yousef, S.W. Hasan, Optimization of an rGO-based biosensor for the sensitive detection of bovine serum albumin: Effect of electric field on detection capability, Chemosphere 301 (2022) 134700.

DOI: 10.1016/j.chemosphere.2022.134700

Google Scholar

[23] X. Chen, X. Yan, J. Qiu, X. Zhang, Y. Zhang, H. Zhou, Y. Zhao, L. Han, Y. Zhang, An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection, Sens. Diagn. 3 (2024) 1724–1732.

DOI: 10.1039/d4sd00181h

Google Scholar

[24] P. Ranjan, R. Khan, Impedimetric Biosensor of Silver Molybdate Anchored on rGO Sheet for Detection of Breast Cancer Mucin-1 Biomarker, ChemistrySelect 9 (2024) e202403162.

DOI: 10.1002/slct.202403162

Google Scholar

[25] Y. Xu, E. Liu, Graphene: Two decades of revolutionizing material science, TIMS 2 (2024) 100059–2.

DOI: 10.59717/j.xinn-mater.2024.100059

Google Scholar

[26] M. Civas, M. Kuscu, O. Cetinkaya, B.E. Ortlek, O.B. Akan, Graphene and related materials for the Internet of Bio-Nano Things, APL Materials 11 (2023) 080901.

DOI: 10.1063/5.0153423

Google Scholar

[27] A. Baruah, R. Newar, S. Das, N. Kalita, M. Nath, P. Ghosh, S. Chinnam, H. Sarma, M. Narayan, Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors, Discover Nano 19 (2024) 103.

DOI: 10.1186/s11671-024-04032-6

Google Scholar

[28] L. Destiarti, R. Riyanto, R. Roto, M. Mudasir, Facile synthesis of reduced graphene oxide using Caesalpinia sappan L. extract as green reducing agent, Next Materials 2 (2024) 100134.

DOI: 10.1016/j.nxmate.2024.100134

Google Scholar

[29] L.G.P. Tienne, L. da S. Candido, B. de S.M. da Cruz, F.F. Gondim, M.P. Ribeiro, R.A. Simão, M. de F.V. Marques, S.N. Monteiro, Reduced graphene oxide synthesized by a new modified Hummer's method for enhancing thermal and crystallinity properties of Poly(vinylidene fluoride), Journal of Materials Research and Technology 18 (2022) 4871–4893.

DOI: 10.1016/j.jmrt.2022.04.092

Google Scholar

[30] J.-W. Hsueh, L.-H. Kuo, P.-H. Chen, W.-H. Chen, C.-Y. Chuang, C.-N. Kuo, C.-S. Lue, Y.-L. Lai, B.-H. Liu, C.-H. Wang, Y.-J. Hsu, C.-L. Lin, J.-P. Chou, M.-F. Luo, Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition, Nat Commun 15 (2024) 653.

DOI: 10.1038/s41467-024-44840-z

Google Scholar

[31] S. Ravichandran, S. Hao, W. Zhang, CeO2-supported Pt nanoclusters for improved electrochemical oxidation of methanol, Carbon Res. 3 (2024) 21.

DOI: 10.1007/s44246-023-00091-z

Google Scholar

[32] Y. Zhang, Y. Zhang, R. Jamal, S. Xie, A. Abdurexit, T. Abdiryim, H. Yang, K. Song, Polythiophene-coated carbon nano boxes for efficient platinum-based catalysts for methanol electrooxidation, Journal of Colloid and Interface Science 675 (2024) 24–35.

DOI: 10.1016/j.jcis.2024.06.247

Google Scholar

[33] O. Baytar, Ö. Şahin, A. Ekinci, Effect of environmentally friendly and efficient metal-free hydrochars as catalysts on sodium borohydride hydrolysis, Fuel 346 (2023) 128308.

DOI: 10.1016/j.fuel.2023.128308

Google Scholar

[34] J. Cui, X. Liu, F. Qie, C. Xie, Q. He, J. Liu, S.L. Suib, W. Wang, Multiple interface coupling on natural tourmaline enables high-efficiency removal of antibiotic: Superior property and mechanism, Journal of Environmental Sciences 140 (2024) 242–254.

DOI: 10.1016/j.jes.2023.08.010

Google Scholar

[35] Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi, W. Wei, Y. Liu, R. Zheng, N. Han, B.-J. Ni, Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy, Nano-Micro Lett. 15 (2022) 4.

DOI: 10.1007/s40820-022-00974-7

Google Scholar

[36] Y.B. Rus, Y. Qu, M. Bosmi, L. Galmiche, P. Audebert, F. Miomandre, Efficient functionalization of reduced graphene oxide by 3-(pyridin-2-yl)-1,2,4,5-tetrazine and design of hybrids with silver nanoparticles for electrocatalysis, Materials Chemistry and Physics 291 (2022) 126607.

DOI: 10.1016/j.matchemphys.2022.126607

Google Scholar

[37] Y. Xu, D. Wu, Q. Zhang, P. Rao, P. Deng, M. Tang, J. Li, Y. Hua, C. Wang, S. Zhong, C. Jia, Z. Liu, Y. Shen, L. Gu, X. Tian, Q. Liu, Regulating Au coverage for the direct oxidation of methane to methanol, Nat Commun 15 (2024) 564.

DOI: 10.1038/s41467-024-44839-6

Google Scholar

[38] J. Hou, J.A. Lartey, C.Y. Lee, J.-H. Kim, Light-enhanced catalytic activity of stable and large gold nanoparticles in homocoupling reactions, Sci Rep 14 (2024) 1352.

DOI: 10.1038/s41598-024-51695-3

Google Scholar

[39] C. Liang, J.Y. Cheong, G. Sitaru, S. Rosenfeldt, A.S. Schenk, S. Gekle, I.-D. Kim, A. Greiner, Size-Dependent Catalytic Behavior of Gold Nanoparticles, Advanced Materials Interfaces 9 (2022) 2100867.

DOI: 10.1002/admi.202100867

Google Scholar

[40] D. Votkina, A. Trelin, V. Semin, O. Lyutakov, V. Svorcik, P. Petunin, G. Audran, S.R.A. Marque, O. Guselnikova, P. Postnikov, Size-dependent plasmonic activity of AuNPs for the rational design of catalysts for organic reactions, Catal. Sci. Technol. 14 (2024) 3707–3718.

DOI: 10.1039/d4cy00084f

Google Scholar

[41] M.G. Ellis, U. Pant, J. Lou-Franco, N. Logan, C. Cao, Directed Assembly of Au Nanostar@Ag Satellite Nanostructures for SERS-Based Sensing of Hg2+ Ions, ACS Appl. Nano Mater. 6 (2023) 10431–10440.

DOI: 10.1021/acsanm.3c01382

Google Scholar

[42] M.B. Askari, P. Salarizadeh, M.H. Ramezan zadeh, MoO3/WO3/rGO as electrode material for supercapacitor and catalyst for methanol and ethanol electrooxidation, Sci Rep 14 (2024) 9907.

DOI: 10.1038/s41598-024-59018-2

Google Scholar

[43] C. Wang, D. Astruc, Recent developments of metallic nanoparticle-graphene nanocatalysts, Progress in Materials Science 94 (2018) 306–383.

DOI: 10.1016/j.pmatsci.2018.01.003

Google Scholar

[44] X. Liu, Y. Sui, T. Duan, C. Meng, Y. Han, CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation, Phys. Chem. Chem. Phys. 16 (2014) 23584–23593.

DOI: 10.1039/c4cp02106a

Google Scholar

[45] Y.B. Rus, L. Galmiche, P. Audebert, A. Courty, E. Maisonhaute, F. Miomandre, Electrodeposition of Silver Nanoparticles on Reduced Graphene Functionalized by Pyridine-Pyridazine Units: Application to Surface-Enhanced Raman Spectroscopy and Electrocatalysis, ChemistrySelect 4 (2019) 1298–1305.

DOI: 10.1002/slct.201802130

Google Scholar

[46] Y. Bin Rus, M. Bosmi, S. Maisonneuve, V. Guérineau, V. Noël, A. Courty, F. Miomandre, Versatile one-pot synthesis of gold nanoclusters and nanoparticles using 3,6-(dipyridin-2-yl)-(1,2,4,5)-tetrazine, RSC Advances 11 (2021) 7043–7050.

DOI: 10.1039/d0ra10961d

Google Scholar

[47] W. Zhang, H. Xu, F. Xie, X. Ma, B. Niu, M. Chen, H. Zhang, Y. Zhang, D. Long, General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane, Nat Commun 13 (2022) 471.

DOI: 10.1038/s41467-022-28180-4

Google Scholar

[48] A. Gautam, H. Dabral, A. Singh, S. Tyagi, N. Tyagi, D. Srivastava, H.R. Kushwaha, A. Singh, Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review, Biomater. Sci. 12 (2024) 4630–4649.

DOI: 10.1039/d4bm00796d

Google Scholar

[49] J. Sengupta, Different Synthesis Routes of Graphene-Based Metal Nanocomposites, in: C.M. Hussain, S. Thomas (Eds.), Handbook of Polymer and Ceramic Nanotechnology, Springer International Publishing, Cham, 2021: p.1035–1051.

DOI: 10.1007/978-3-030-40513-7_30

Google Scholar

[50] Y.B. Rus, L. Galmiche, P. Audebert, F. Miomandre, Influence of the electrolytic medium on the performance and stability of functionalized graphene-polypyrrole nanocomposites as materials for supercapacitors, Synthetic Metals 254 (2019) 22–28.

DOI: 10.1016/j.synthmet.2019.05.011

Google Scholar

[51] R. Yahdi Bin, Nanocomposites à base de graphène fonctionnalisé pour le stockage de l'énergie et la catalyse, Dissertation, [Thesis, Université Paris-Saclay (ComUE)], 2019b. http://www.theses.fr/2019SACLN068.

Google Scholar

[52] P.A. Mikhaylov, M.I. Vinogradov, I.S. Levin, G.A. Shandryuk, A.V. Lubenchenko, V.G. Kulichikhin, Synthesis and characterization of polyethylene terephthalate-reduced graphene oxide composites, IOP Conf. Ser.: Mater. Sci. Eng. 693 (2019) 012036.

DOI: 10.1088/1757-899x/693/1/012036

Google Scholar