[1]
A. Triphati and T. B. Pirzadah, "Chapter 3-Synthesis methods of nanoparticles and their key applications," in Micro and Nano Technologies, M. Ozturk, A. Roy, R. A. Bhat, F. Vardar-Sukan, and F. M. B. T.-S. of B. for B. A. Policarpo Tonelli, Eds. Elsevier, 2023, p.57–76.
DOI: 10.1016/b978-0-323-91195-5.00001-5
Google Scholar
[2]
L. J. Radziemski, Lasers-induced plasmas and applications. CRC Press, 2020.
Google Scholar
[3]
W. Kruer, The physics of laser plasma interactions. crc Press, 2019.
Google Scholar
[4]
F. Claverie, "Chapter 10-Laser ablation," D. B. T.-S. I. S. in I. and I. Beauchemin, Ed. Amsterdam: Elsevier, 2020, p.469–531.
Google Scholar
[5]
B. B. Bert, "Laser Surface Ablation Procedures BT-Current Advances in Ocular Surgery," E. Tsui, S. S. M. Fung, and R. B. Singh, Eds. Singapore: Springer Nature Singapore, 2023, p.123–134.
Google Scholar
[6]
C. Dowding and A. Borman, "22 - Laser-initiated ablation of materials," in Woodhead Publishing Series in Electronic and Optical Materials, J. Lawrence and D. G. B. T.-L. S. E. Waugh, Eds. Woodhead Publishing, 2015, p.523–546.
DOI: 10.1016/b978-1-78242-074-3.00022-2
Google Scholar
[7]
C. M. Pacella, Image-guided Laser Ablation.
Google Scholar
[8]
K. Chaudhary, S. Z. H. Rizvi, and J. Ali, "Laser-induced plasma and its applications," Plasma Sci. Technol. Phys. states Chem. React., p.259–291, 2016.
Google Scholar
[9]
A. Alberti et al., "Laser-induced non-equilibrium plasma kernel dynamics," J. Phys. D. Appl. Phys., vol. 53, no. 2, p.25201, 2019.
Google Scholar
[10]
G. Ciofani, Smart nanoparticles for biomedicine. Elsevier, 2018.
Google Scholar
[11]
I. K. Abbas and K. A. Aadim, "Synthesis and Study of Structural Properties of Calcium Oxide Nanoparticles Produced by Laser-Induced Plasma and its Effect on Antibacterial Activity," Sci. Technol. Indones., vol. 7, no. 4 SE-Articles, p.427–434, Oct. 2022.
DOI: 10.26554/sti.2022.7.4.427-434
Google Scholar
[12]
R. Singh, "Chapter 10 - Nanosecond pulsed laser-plasma interaction and its applications," in Micro and Nano Technologies, H. Song, T. A. Nguyen, A. Amrane, A. Amine Assadi, and G. B. T.-P. at the N. Yasin, Eds. Elsevier, 2022, p.221–252.
Google Scholar
[13]
W. Q. Lim and Z. Gao, "Plasmonic nanoparticles in biomedicine," Nano Today, vol. 11, no. 2, p.168–188, 2016.
DOI: 10.1016/j.nantod.2016.02.002
Google Scholar
[14]
D. M. Goncalves, R. de Liz, and D. Girard, "Activation of neutrophils by nanoparticles.," ScientificWorldJournal., vol. 11, p.1877–1885, 2011.
DOI: 10.1100/2011/768350
Google Scholar
[15]
Z. Yan and D. B. Chrisey, "Pulsed laser ablation in liquid for micro-/nanostructure generation," J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3, p.204–223, 2012.
DOI: 10.1016/j.jphotochemrev.2012.04.004
Google Scholar
[16]
R. E. Russo, X. L. Mao, J. Yoo, and J. J. Gonzalez, "Chapter 3 - Laser ablation," J. P. Singh and S. N. B. T.-L.-I. B. S. (Second E. Thakur, Eds. Amsterdam: Elsevier, 2007, p.41–70.
Google Scholar
[17]
K. A. Aadim and M. M. Shehab, "Influence of Laser Energy on the Structural and Optical Properties of (CdO):(CoO) Thin Films Produced by Laser-Induced Plasma (LIP)," Iraqi J. Phys., vol. 19, no. 49, p.42–52, 2021.
DOI: 10.30723/ijp.v19i49.662
Google Scholar
[18]
V. K. Gupta, A. Fakhri, S. Tahami, and S. Agarwal, "Zn doped CdO nanoparticles: Structural, morphological, optical, photocatalytic and anti-bacterial properties," J. Colloid Interface Sci., vol. 504, p.164–170, 2017.
DOI: 10.1016/j.jcis.2017.05.026
Google Scholar
[19]
L. M. B. Vargas, K. Bolaños, M. J. da Silva, S. de Castro, M. L. Peres, and M. P. F. de Godoy, "Comparative analysis of phase coherence length in polycrystalline CdO films on two distinct substrates," Thin Solid Films, vol. 800, p.140423, 2024.
DOI: 10.1016/j.tsf.2024.140423
Google Scholar
[20]
R. Narasimhachar, B. Basavaraj, B. T. Vijaykumar, and B. Sannakki, "Studies on the electrical properties of polyaniline with cadmium oxide nanocomposites," Mater. Today Proc., vol. 92, p.1676–1680, 2023.
DOI: 10.1016/j.matpr.2023.06.304
Google Scholar
[21]
B. Amudhavalli, R. Mariappan, M. Prasath, and R. N. Jayaprakash, "Fabrication and characterization of thin film CdO nanoparticles for gas sensing applications," J. Mater. Sci. Mater. Electron., vol. 35, no. 8, p.547, 2024.
DOI: 10.1007/s10854-024-12240-0
Google Scholar
[22]
S. Ghotekar et al., "Eco-friendly fabrication of CdO nanoparticles using Polyalthia longifolia leaves extract for antibacterial and electrochemical sensing studies," J. Sol-Gel Sci. Technol., vol. 110, no. 1, p.221–232, 2024.
DOI: 10.1007/s10971-024-06352-6
Google Scholar
[23]
A. Mazhar, N. S. Elkholy, N. M. Yousif, and M. S. Shalaby, "Investigations of Structural, Optical, Thermal, and spectroscopic characteristics of CdO-Ni nanoparticles employed in anti-cancer activities for cancer cells," Results Chem., vol. 6, p.101204, 2023.
DOI: 10.1016/j.rechem.2023.101204
Google Scholar
[24]
A. K. Inamdar et al., "A review on environmental applications of metal oxide nanoparticles through waste water treatment," Mater. Today Proc., 2023.
DOI: 10.1016/j.matpr.2023.05.527
Google Scholar
[25]
E. Przeździecka et al., "Influence of the growth temperature and annealing on the optical properties of {CdO/ZnO}30 superlattices," J. Lumin., vol. 269, p.120481, 2024.
DOI: 10.1016/j.jlumin.2024.120481
Google Scholar
[26]
D. Srividya, J. P. Seema, Prabhurajeshwar, and H. M. Navya, "Chapter 9 - Microbial metallonanoparticles—an alternative to traditional nanoparticle synthesis," P. Singh, V. Kumar, M. Bakshi, C. M. Hussain, and M. B. T.-E. A. of M. N. Sillanpää, Eds. Elsevier, 2023, p.149–166.
DOI: 10.1016/b978-0-323-91744-5.00019-9
Google Scholar
[27]
B. L. F. Chin, F. H. Juwono, and K. S. C. Yong, "Nanotechnology and Nanomaterials for Medical Applications," in Nanotechnology for Electronic Applications, Springer, 2022, p.63–87.
DOI: 10.1007/978-981-16-6022-1_4
Google Scholar
[28]
S. Khan, M. Khan, N. K. Janjua, and S. S. Shah, "6 - Electrochemical sensors and nanotechnology," in Micro and Nano Technologies, A. Ahmad, F. Verpoort, A. Khan, and S. B. T.-N.-B. E. S. : P. Ali Applications and Recent Advances, Eds. Elsevier, 2024, p.89–102.
DOI: 10.1016/b978-0-12-822512-7.00008-9
Google Scholar
[29]
I. Khurana et al., "Chapter 1 - Introduction to nanoengineering and nanotechnology for biomedical applications," in Micro and Nano Technologies, N. Ahmad and G. B. T.-E. N. for M. A. Packirisamy, Eds. Elsevier, 2023, p.1–34.
Google Scholar
[30]
R. Rathore, D. Suhag, F. Wan, A. Thakur, and P. Thakur, "Everyday Nanotechnology BT - Integrated Nanomaterials and their Applications," D. Suhag, A. Thakur, and P. Thakur, Eds. Singapore: Springer Nature Singapore, 2023, p.19–35.
DOI: 10.1007/978-981-99-6105-4_2
Google Scholar
[31]
X. Sun and Z. Cui, "Microbiological Nanotechnology BT - Nanomedicine," N. Gu, Ed. Singapore: Springer Nature Singapore, 2023, p.525–553.
Google Scholar
[32]
S. Abbas, H. Basma, J. Al Boukhari, and R. Awad, "Characterization of CdO nanoparticles prepared by co-precipitation method under different pH and calcination temperatures," Appl. Phys. A, vol. 127, no. 7, p.505, 2021.
DOI: 10.1007/s00339-021-04669-5
Google Scholar
[33]
E. Przeździecka et al., "The Band-Gap Studies of Short-Period CdO/MgO Superlattices," Nanoscale Res. Lett., vol. 16, no. 1, p.59, 2021.
DOI: 10.1186/s11671-021-03517-y
Google Scholar
[34]
G. Singh and M. S. Chauhan, "Synthesis and characterization of nanostructured La3+ - doped CdO for photocatalytic application," Chem. Phys. Lett., vol. 830, p.140810, 2023.
DOI: 10.1016/j.cplett.2023.140810
Google Scholar
[35]
T. Prakash, D. Murugesan, K. Moulaee, G. Neri, and S. Srimala, "Synthesis, characterization, and gas sensing application of crumpled CdO sheets prepared in alkaline media," Mater. Res. Bull., vol. 166, p.112339, 2023.
DOI: 10.1016/j.materresbull.2023.112339
Google Scholar
[36]
A. Munshi et al., "Comparative investigation of physicochemical properties of cadmium oxide nanoparticles," Ceram. Int., vol. 48, no. 3, p.4134–4140, 2022.
DOI: 10.1016/j.ceramint.2021.10.204
Google Scholar
[37]
T. T. P. Nguyen, R. Tanabe, and Y. Ito, "Energy partition in underwater nanosecond laser ablation," Appl. Phys. A, vol. 130, no. 5, p.298, 2024.
DOI: 10.1007/s00339-024-07445-3
Google Scholar
[38]
Y. H. Khadim, U. M. Nayef, and F. A.-H. Mutlak, "Enhancing Gas Sensing Performance by Laser Ablation and Characterization of Ag@Au Bimetallic Nanoparticles," J. Appl. Sci. Nanotechnol., vol. 4, no. 1, p.9–18, 2024.
DOI: 10.53293/jasn.2023.7137.1252
Google Scholar