Investigation of the Structural Characteristics of Cadmium Oxide Nanoparticles Synthesised by Laser Ablation

Article Preview

Abstract:

Laser ablation in an aqueous solution is a prominent technique for synthesizing metal nanoparticles (NPs). These tiny particles possess distinct physical properties that make them suitable for various applications. This research used the Nd: YAG laser with varying laser energies (300-500) mJ at the number of fixed laser pulses 100 to synthesize cadmium oxide nanoparticles (CdO NPs) through laser ablation. Studying the optical properties and characterization of the synthesized CdO NPs was a fascinating endeavor. Increasing the laser power increased the measured energy gap (Eg) from 2.15 to 2.67 eV. X-ray diffraction (XRD) examination showed that the intensity of the resulting spectrum rises as the laser energy increases. Additionally, the particle size of cadmium oxide nanoparticles (CdO NPs) decreases gradually with higher laser energy. At an energy of 300 mJ, the CdO NPs measured 63.524 nm, then reduced to 32.438 nm when the laser energy was increased to 500 mJ. There is a strong correlation between the size of the NPs and the laser energy. Field emission Scanning electron microscopy (FE-SEM) revealed the formation of CdO NPs with a uniform, semi-spherical shape. The CdO NPs exhibited a consistent topography and ranged in size from 25 to 80 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-73

Citation:

Online since:

March 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Triphati and T. B. Pirzadah, "Chapter 3-Synthesis methods of nanoparticles and their key applications," in Micro and Nano Technologies, M. Ozturk, A. Roy, R. A. Bhat, F. Vardar-Sukan, and F. M. B. T.-S. of B. for B. A. Policarpo Tonelli, Eds. Elsevier, 2023, p.57–76.

DOI: 10.1016/b978-0-323-91195-5.00001-5

Google Scholar

[2] L. J. Radziemski, Lasers-induced plasmas and applications. CRC Press, 2020.

Google Scholar

[3] W. Kruer, The physics of laser plasma interactions. crc Press, 2019.

Google Scholar

[4] F. Claverie, "Chapter 10-Laser ablation," D. B. T.-S. I. S. in I. and I. Beauchemin, Ed. Amsterdam: Elsevier, 2020, p.469–531.

Google Scholar

[5] B. B. Bert, "Laser Surface Ablation Procedures BT-Current Advances in Ocular Surgery," E. Tsui, S. S. M. Fung, and R. B. Singh, Eds. Singapore: Springer Nature Singapore, 2023, p.123–134.

Google Scholar

[6] C. Dowding and A. Borman, "22 - Laser-initiated ablation of materials," in Woodhead Publishing Series in Electronic and Optical Materials, J. Lawrence and D. G. B. T.-L. S. E. Waugh, Eds. Woodhead Publishing, 2015, p.523–546.

DOI: 10.1016/b978-1-78242-074-3.00022-2

Google Scholar

[7] C. M. Pacella, Image-guided Laser Ablation.

Google Scholar

[8] K. Chaudhary, S. Z. H. Rizvi, and J. Ali, "Laser-induced plasma and its applications," Plasma Sci. Technol. Phys. states Chem. React., p.259–291, 2016.

Google Scholar

[9] A. Alberti et al., "Laser-induced non-equilibrium plasma kernel dynamics," J. Phys. D. Appl. Phys., vol. 53, no. 2, p.25201, 2019.

Google Scholar

[10] G. Ciofani, Smart nanoparticles for biomedicine. Elsevier, 2018.

Google Scholar

[11] I. K. Abbas and K. A. Aadim, "Synthesis and Study of Structural Properties of Calcium Oxide Nanoparticles Produced by Laser-Induced Plasma and its Effect on Antibacterial Activity," Sci. Technol. Indones., vol. 7, no. 4 SE-Articles, p.427–434, Oct. 2022.

DOI: 10.26554/sti.2022.7.4.427-434

Google Scholar

[12] R. Singh, "Chapter 10 - Nanosecond pulsed laser-plasma interaction and its applications," in Micro and Nano Technologies, H. Song, T. A. Nguyen, A. Amrane, A. Amine Assadi, and G. B. T.-P. at the N. Yasin, Eds. Elsevier, 2022, p.221–252.

Google Scholar

[13] W. Q. Lim and Z. Gao, "Plasmonic nanoparticles in biomedicine," Nano Today, vol. 11, no. 2, p.168–188, 2016.

DOI: 10.1016/j.nantod.2016.02.002

Google Scholar

[14] D. M. Goncalves, R. de Liz, and D. Girard, "Activation of neutrophils by nanoparticles.," ScientificWorldJournal., vol. 11, p.1877–1885, 2011.

DOI: 10.1100/2011/768350

Google Scholar

[15] Z. Yan and D. B. Chrisey, "Pulsed laser ablation in liquid for micro-/nanostructure generation," J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3, p.204–223, 2012.

DOI: 10.1016/j.jphotochemrev.2012.04.004

Google Scholar

[16] R. E. Russo, X. L. Mao, J. Yoo, and J. J. Gonzalez, "Chapter 3 - Laser ablation," J. P. Singh and S. N. B. T.-L.-I. B. S. (Second E. Thakur, Eds. Amsterdam: Elsevier, 2007, p.41–70.

Google Scholar

[17] K. A. Aadim and M. M. Shehab, "Influence of Laser Energy on the Structural and Optical Properties of (CdO):(CoO) Thin Films Produced by Laser-Induced Plasma (LIP)," Iraqi J. Phys., vol. 19, no. 49, p.42–52, 2021.

DOI: 10.30723/ijp.v19i49.662

Google Scholar

[18] V. K. Gupta, A. Fakhri, S. Tahami, and S. Agarwal, "Zn doped CdO nanoparticles: Structural, morphological, optical, photocatalytic and anti-bacterial properties," J. Colloid Interface Sci., vol. 504, p.164–170, 2017.

DOI: 10.1016/j.jcis.2017.05.026

Google Scholar

[19] L. M. B. Vargas, K. Bolaños, M. J. da Silva, S. de Castro, M. L. Peres, and M. P. F. de Godoy, "Comparative analysis of phase coherence length in polycrystalline CdO films on two distinct substrates," Thin Solid Films, vol. 800, p.140423, 2024.

DOI: 10.1016/j.tsf.2024.140423

Google Scholar

[20] R. Narasimhachar, B. Basavaraj, B. T. Vijaykumar, and B. Sannakki, "Studies on the electrical properties of polyaniline with cadmium oxide nanocomposites," Mater. Today Proc., vol. 92, p.1676–1680, 2023.

DOI: 10.1016/j.matpr.2023.06.304

Google Scholar

[21] B. Amudhavalli, R. Mariappan, M. Prasath, and R. N. Jayaprakash, "Fabrication and characterization of thin film CdO nanoparticles for gas sensing applications," J. Mater. Sci. Mater. Electron., vol. 35, no. 8, p.547, 2024.

DOI: 10.1007/s10854-024-12240-0

Google Scholar

[22] S. Ghotekar et al., "Eco-friendly fabrication of CdO nanoparticles using Polyalthia longifolia leaves extract for antibacterial and electrochemical sensing studies," J. Sol-Gel Sci. Technol., vol. 110, no. 1, p.221–232, 2024.

DOI: 10.1007/s10971-024-06352-6

Google Scholar

[23] A. Mazhar, N. S. Elkholy, N. M. Yousif, and M. S. Shalaby, "Investigations of Structural, Optical, Thermal, and spectroscopic characteristics of CdO-Ni nanoparticles employed in anti-cancer activities for cancer cells," Results Chem., vol. 6, p.101204, 2023.

DOI: 10.1016/j.rechem.2023.101204

Google Scholar

[24] A. K. Inamdar et al., "A review on environmental applications of metal oxide nanoparticles through waste water treatment," Mater. Today Proc., 2023.

DOI: 10.1016/j.matpr.2023.05.527

Google Scholar

[25] E. Przeździecka et al., "Influence of the growth temperature and annealing on the optical properties of {CdO/ZnO}30 superlattices," J. Lumin., vol. 269, p.120481, 2024.

DOI: 10.1016/j.jlumin.2024.120481

Google Scholar

[26] D. Srividya, J. P. Seema, Prabhurajeshwar, and H. M. Navya, "Chapter 9 - Microbial metallonanoparticles—an alternative to traditional nanoparticle synthesis," P. Singh, V. Kumar, M. Bakshi, C. M. Hussain, and M. B. T.-E. A. of M. N. Sillanpää, Eds. Elsevier, 2023, p.149–166.

DOI: 10.1016/b978-0-323-91744-5.00019-9

Google Scholar

[27] B. L. F. Chin, F. H. Juwono, and K. S. C. Yong, "Nanotechnology and Nanomaterials for Medical Applications," in Nanotechnology for Electronic Applications, Springer, 2022, p.63–87.

DOI: 10.1007/978-981-16-6022-1_4

Google Scholar

[28] S. Khan, M. Khan, N. K. Janjua, and S. S. Shah, "6 - Electrochemical sensors and nanotechnology," in Micro and Nano Technologies, A. Ahmad, F. Verpoort, A. Khan, and S. B. T.-N.-B. E. S. : P. Ali Applications and Recent Advances, Eds. Elsevier, 2024, p.89–102.

DOI: 10.1016/b978-0-12-822512-7.00008-9

Google Scholar

[29] I. Khurana et al., "Chapter 1 - Introduction to nanoengineering and nanotechnology for biomedical applications," in Micro and Nano Technologies, N. Ahmad and G. B. T.-E. N. for M. A. Packirisamy, Eds. Elsevier, 2023, p.1–34.

Google Scholar

[30] R. Rathore, D. Suhag, F. Wan, A. Thakur, and P. Thakur, "Everyday Nanotechnology BT - Integrated Nanomaterials and their Applications," D. Suhag, A. Thakur, and P. Thakur, Eds. Singapore: Springer Nature Singapore, 2023, p.19–35.

DOI: 10.1007/978-981-99-6105-4_2

Google Scholar

[31] X. Sun and Z. Cui, "Microbiological Nanotechnology BT - Nanomedicine," N. Gu, Ed. Singapore: Springer Nature Singapore, 2023, p.525–553.

Google Scholar

[32] S. Abbas, H. Basma, J. Al Boukhari, and R. Awad, "Characterization of CdO nanoparticles prepared by co-precipitation method under different pH and calcination temperatures," Appl. Phys. A, vol. 127, no. 7, p.505, 2021.

DOI: 10.1007/s00339-021-04669-5

Google Scholar

[33] E. Przeździecka et al., "The Band-Gap Studies of Short-Period CdO/MgO Superlattices," Nanoscale Res. Lett., vol. 16, no. 1, p.59, 2021.

DOI: 10.1186/s11671-021-03517-y

Google Scholar

[34] G. Singh and M. S. Chauhan, "Synthesis and characterization of nanostructured La3+ - doped CdO for photocatalytic application," Chem. Phys. Lett., vol. 830, p.140810, 2023.

DOI: 10.1016/j.cplett.2023.140810

Google Scholar

[35] T. Prakash, D. Murugesan, K. Moulaee, G. Neri, and S. Srimala, "Synthesis, characterization, and gas sensing application of crumpled CdO sheets prepared in alkaline media," Mater. Res. Bull., vol. 166, p.112339, 2023.

DOI: 10.1016/j.materresbull.2023.112339

Google Scholar

[36] A. Munshi et al., "Comparative investigation of physicochemical properties of cadmium oxide nanoparticles," Ceram. Int., vol. 48, no. 3, p.4134–4140, 2022.

DOI: 10.1016/j.ceramint.2021.10.204

Google Scholar

[37] T. T. P. Nguyen, R. Tanabe, and Y. Ito, "Energy partition in underwater nanosecond laser ablation," Appl. Phys. A, vol. 130, no. 5, p.298, 2024.

DOI: 10.1007/s00339-024-07445-3

Google Scholar

[38] Y. H. Khadim, U. M. Nayef, and F. A.-H. Mutlak, "Enhancing Gas Sensing Performance by Laser Ablation and Characterization of Ag@Au Bimetallic Nanoparticles," J. Appl. Sci. Nanotechnol., vol. 4, no. 1, p.9–18, 2024.

DOI: 10.53293/jasn.2023.7137.1252

Google Scholar