Electronic and Optical Properties of Type Ii Quantum Ring GaAs/AlxGa1−xAs in Applied Lateral Electric Field

Article Preview

Abstract:

A theoretical study of the effect of applying a lateral electric field on type I and type II GaAs/AlGaAs quantum ring with different Al concentration in the barrier is presented. The effect on the quantum states of the carriers was investigated using the approximation of the effective mass. It’s showed that the electric field has a great effect on the wavefunction and the energy of the carriers. The transition point of the quantum ring from type I to type II was found with increasing electric field strength. For electric fields less than 4.75 x 10-4 V/cm, the quantum ring is of type II: the symmetry of electron ground state is X. Above this threshold, it transitions to type I : the symmetry of electron ground state is Γ. Also, the effects of electric field on the linear and non-linear optical properties of the studied structure illuminated with different incident optical intensity were studied. There is an increase in the radiative lifetime with a notable decrease in the absorption coefficient and the refractive index with the increase in the intensity of the electric field. It’s noted that the increase in the type II quantum ring lifetime (20%) is greater than that of type I quantum ring (10 %) due to the confinement of the G-electron in the quantum ring which is not the case with the X-electron. To the best of our knowledge, this article is the first theoretical study of the influence of lateral electric field on physical properties of type II GaAs/AlGaAs quantum ring structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Boussetta, O. Mommadi, A. El Moussaouy, M. Hbibi, S. Chouef, C.A. Duque, A. Kerkour El-Miad, Effect of the electric field orientation on stark shift, dipole moment and electronic properties in a circular toroidal quantum ring: Presence of shallow donor impurity, Physica B: Condensed Matter 690 (2024) 416263- 416285.

DOI: 10.1016/j.physb.2024.416263

Google Scholar

[2] D.A. Ospina, D. Duque, M.E. Mora-Ramos, J.A. Vinasco, A. Radu, R.L. Restrepo, A.L. Morales, J. Sierra-Ortega, G.E. Escorcia-Salas, M.A. Giraldo, J. Montoya-Sanchez, C.A. Duque, Hopf-link GaAs-AlGaAs quantum ring under geometric and external field settings, Physica E 163 (2024) 116032- 116035.

DOI: 10.1016/j.physe.2024.116032

Google Scholar

[3] L. Seitner, J. Popp, I. Heckelmann, R-E Vass, B. Meng, M. Haider, J. Faist, C. Jirauschek, Backscattering-Induced Dissipative Solitons in Ring Quantum Cascade Lasers, Phys. Rev. Lett. 132 (2024) 043805-043805.

DOI: 10.1103/physrevlett.132.043805

Google Scholar

[4] M. Kunrugsa, Optical absorption spectra of GaSb/GaAs quantum-ring-with-dot structures and their potential for intermediate band solar cells, J. Phys. D: Appl. Phys. 56 (2023) 435103-435114.

DOI: 10.1088/1361-6463/ace7dc

Google Scholar

[5] P.K. Yadav, P. Kumar, S. Chandra, V. Kumar, D. Kumar, S.H. Hasan, Carbon quantum dots: synthesis, structure, properties, and catalytic applications for organic synthesis, Catalysts 13 (2023) 422-443.

DOI: 10.3390/catal13020422

Google Scholar

[6] D.V. Pandi, V. Saraswathi, M.R. Venkatraman, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, K. Brindhadevi, A. Pugazhendhi, PbS quantum dots-sensitized ZnO nanorods-based third generation solar cells, Materials Today Chemistry 29 (2023) 101444-101456.

DOI: 10.1016/j.mtchem.2023.101444

Google Scholar

[7] A.G. Mirea, I.D. Vlaicu, S. Derbali, F. Neatu, A.G. Tomulescu, C. Besleaga, M. Enculescu, A.C. Kuncser, A.C. Iacoban, N. Filipoiu, M. Cuzminschi, G.A. Nemnes, A. Manolescu, M. Florea, I. Pintilie, Electron transporting bilayers for perovskite solar cells: spray coating deposition of c-TiO2/m-SnO2-quantum dots, Colloids and Surfaces A: Physicochemical and Engineering Aspects 705 (2025) 135508-135519.

DOI: 10.1016/j.colsurfa.2024.135508

Google Scholar

[8] Y. Ren, L. He, Y. He, Y. Wang, S. Li, L. Zhou, P. Ye, R. Gao, G. Chen, W. Cai, C. Fu, The key role of anti-solvent temperature in quantum dot/perovskite core-shell nanowire array solar cells, Physica E 165 (2025) 116131-116138.

DOI: 10.1016/j.physe.2024.116131

Google Scholar

[9] A. Mahjoory, K. Karimi, R. Teimouri, R. Mohammadpour, M. Kolahdouz, Thin film Cs2TiBr6 perovskite solar cell incorporating functionalized PbS colloidal quantum dots as a hole transporting layer, Journal of Physics and Chemistry of Solids 196 (2025) 112306-031959.

DOI: 10.1016/j.jpcs.2024.112306

Google Scholar

[10] H-H Kim, D.H. Kim, B.G. Choi, D.H. Kim, S.D. Oh, D.H. Shin, H. Lee, Enhancement of photovoltaic parameters of thermally stable graphene/LaVO3 semitransparent solar cell by employing interfacial graphene quantum dots, Nanotechnology 35 (2024) 495203-495211.

DOI: 10.1088/1361-6528/ad7b3d

Google Scholar

[11] H. Yu, Y. Zu, L. Gao, S.Z. U. Din, C. Li, H. Gao, W. Ji, H. Xu, R. Zhai, Z. Jia, X. Feng, J. Liu, Q. Yang, Zero-dimensional lead telluride quantum dots optical modulator for red Pr: YLF ultrashort pulse laser, Optics & Laser Technology 181 (2025) 112003- 111975.

DOI: 10.1016/j.optlastec.2024.112003

Google Scholar

[12] L. Ye, S. Hong, C. Lu, Q. Zhao, Stable random laser of perovskite quantum dots based on SiO2-QDs-SiO2 composite nanostructure, Journal of Luminescence 277 (2025) 120946-120955.

DOI: 10.1016/j.jlumin.2024.120946

Google Scholar

[13] S. Rossi, E. T. Simola, M. Raimondo, M. Acciarri, J. Pedrini, A. Balocchi, X. Marie, G. Isella, F. Pezzoli, Electric-field induced modification of the photoluminescence polarization in Ge/Si0.15Ge0.85 quantum wells, Proc. SPIE 12656, (2023) 126560I-1-126560I-6.

DOI: 10.1117/12.2678909

Google Scholar

[14] D. Bejan, C. Stan, Controlling the interband transitions in a triple quantum ring: Effects of intense laser and electric fields, Journal of Physics and Chemistry of Solids 188 (2024) 111887-111896.

DOI: 10.1016/j.jpcs.2024.111887

Google Scholar

[15] R. Sellami, A.B. Mansour, M.S. Kehili, A. Melliti, Band alignment transition from type I to type II in GaAs/AlxGa1-xAs quantum ring, Physica E 126 (2021) 114476- 114482.

DOI: 10.1016/j.physe.2020.114476

Google Scholar

[16] R. Sellami, M.S. Kehili, A. B. Mansour, A. Melliti, Manipulation of linear and nonlinear optical properties of type I and type II quantum ring GaAs/AlxGa1−xAs, Optical and Quantum Electronics 53 (2021) 220-229.

DOI: 10.1007/s11082-021-02863-6

Google Scholar

[17] The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com

DOI: 10.2514/5.9781600861628.0425.0428

Google Scholar

[18] V.M. Fomin, V.N. Gladilin, S.N. Klimin, J.T. Devreese, N.A.J.M. Kleemans, P.M. Koenraad, Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled InxGa1-xAs quantum rings in GaAs, Phys. Rev. B 76 (2007) 235320-235327.

DOI: 10.1103/physrevb.76.235320

Google Scholar

[19] R. Chaurasiya, S. Dahiya, R. Sharma, A study of confined Stark effect, hydrostatic pressure and temperature on nonlinear optical properties in 1D GaxAl1-xAs/GaAs/GaxAl1-xAs quantum dots under a finite square well potential, Nanosystems: Phys. Chem. Math. 14 (2023) 44-53.

DOI: 10.17586/2220-8054-2023-14-1-44-53

Google Scholar