Preparation of Type I n-n Heterojunction Cd(OH)2/Bi10Cd3O20 and its Enhanced Photocatalytic Properties

Article Preview

Abstract:

The heterojunction structure Cd(OH)2/Bi10Cd3O20 was successfully constructed through a straightforward hydrothermal method. The product was characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), Diffuse reflectance spectrum (DRS), Raman analysis, photocurrent and electrochemical impedance spectroscopy (EIS) measurements. SEM, HRTEM and Raman analysis confirmed that the nanorod Bi10Cd3O20 was effectively stacked on the surface of the hexagonal microblock Cd(OH)2, forming the heterojunction composite. This composite demonstrated exceptional photocatalytic performance in the degradation of azo dye pollutants, with a degradation rate for Rhodamine B reaching 98% under optimal synthesis conditions. A plausible photocatalytic mechanism for the heterojunction composite, based on a type I n-n heterojunction, was also proposed. The heterostructure significantly facilitates the migration and separation of charge carriers, thereby enhancing the photoactivity and stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-47

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.X. Zhu, L. Lee, H.H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud, Journal of Hazardous Materials 149(3) (2007) 735-741.

DOI: 10.1016/j.jhazmat.2007.04.037

Google Scholar

[2] J. Tie, Z. Zheng, G. Li, N.N. Geng, L. Hu, Removal of an anionic azo dye direct black 19 from water using white mustard seed (Semen sinapis) protein as a natural coagulant, Journal of Water Reuse and Desalination 9(4) (2019) 442-451.

DOI: 10.2166/wrd.2019.018

Google Scholar

[3] N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques, Reviews in Environmental Science and Bio/Technology 19(3) (2020) 543-560.

DOI: 10.1007/s11157-020-09543-z

Google Scholar

[4] L. Bilińska, M. Gmurek, Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions, Water Resources and Industry 26 (2021) 100160.

DOI: 10.1016/j.wri.2021.100160

Google Scholar

[5] E.N. Zare, S. Iftekhar, Y. Park, J. Joseph, V. Srivastava, M.A. Khan, P. Makvandi, M. Sillanpaa, R.S. Varma, An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants, Chemosphere 280 (2021) 130907.

DOI: 10.1016/j.chemosphere.2021.130907

Google Scholar

[6] Y.J. Lai, D.J. Lee, Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: A review, Chemosphere 282 (2021) 131059.

DOI: 10.1016/j.chemosphere.2021.131059

Google Scholar

[7] M. Saeed, M. Muneer, A. ul Haq, N. Akram, Photocatalysis: an effective tool for photodegradation of dyes-a review, Environmental Science and Pollution Research 29(1) (2022) 293-311.

DOI: 10.1007/s11356-021-16389-7

Google Scholar

[8] L. Sruthi, B. Janani, S. Sudheer Khan, Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: A review, Separation and Purification Technology 279 (2021) 119709-1197026.

DOI: 10.1016/j.seppur.2021.119709

Google Scholar

[9] Y. Zhao, Y. Li, L. Sun, Recent advances in photocatalytic decomposition of water and pollutants for sustainable application, Chemosphere 276 (2021) 130201.

DOI: 10.1016/j.chemosphere.2021.130201

Google Scholar

[10] M.F. Ehsan, S. Bashir, S. Hamid, A. Zia, Y. Abbas, K. Umbreen, M.N. Ashiq, A. Shah, One-pot facile synthesis of the ZnO/ZnSe heterostructures for efficient photocatalytic degradation of azo dye, Applied Surface Science 459 (2018) 194-200.

DOI: 10.1016/j.apsusc.2018.07.162

Google Scholar

[11] X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu, Y. He, Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater, Journal of Colloid and Interface Science 607 (2022) 412-422.

DOI: 10.1016/j.jcis.2021.09.004

Google Scholar

[12] H. Guan, Q. Wang, Y. Feng, H. Sun, W. Zhang, Y. Hu, Q. Zhong, Preparation of Binary Type II alpha-Bi2O3/Bi12TiO20 Cross-Shaped Heterojunction with Enhanced Visible Light Photocatalytic Performance, Acs Applied Electronic Materials 4(3) (2022) 1132-1142.

DOI: 10.1021/acsaelm.1c01249.s001

Google Scholar

[13] L.Z. Pei, C.H. Yu, Z.Y. Xue, Y. Zhang, A Review on Ternary Bismuthate Nanoscale Materials, Recent Patents on Nanotechnology 15(2) (2021) 142-153.

DOI: 10.2174/1872210514666200929144352

Google Scholar

[14] N. Kumada, A. Miura, T. Takei, S. Nishimoto, Y. Kameshima, M. Miyake, Y. Kuroiwa, C. Moriyoshi, Hydrothermal synthesis and crystal structure analysis of two new cadmium bismuthates, CdBi2O6 and Cd0.37Bi0.63O1.79, Journal of Asian Ceramic Societies 3(3) (2015) 251-254.

DOI: 10.1016/j.jascer.2015.04.003

Google Scholar

[15] H. Najafian, F. Manteghi, F. Beshkar, M. Salavati-Niasari, Cd3Bi10O20 nanostructures: new facile synthesis, characterization and photocatalytic activity under visible light irradiation, Journal of Materials Science-Materials in Electronics 29(8) (2018) 6639-6647.

DOI: 10.1007/s10854-018-8649-4

Google Scholar

[16] Y. Lu, M. Ye, F. Liu, G. Chen, L. Xu, X. Kong, Overview on the synthesis and applications of cadmium hydroxide nanomaterials, Journal of the Iranian Chemical Society 12(10) (2015) 1829-1840.

DOI: 10.1007/s13738-015-0658-0

Google Scholar

[17] R. Sahraei, A. Mihandoost, G. Nabiyouni, A. Daneshfar, M. Roushani, M.H.M. Ara, Room temperature synthesis and characterization of ultralong Cd(OH)2 nanowires: a simple and template-free chemical route, Applied Physics a-Materials Science & Processing 109(2) (2012) 471-475.

DOI: 10.1007/s00339-012-7056-6

Google Scholar

[18] Z.Q. Li, X.S. Lin, L. Zhang, X.T. Chen, Z.L. Xue, Microwave-assisted hydrothermal synthesis, growth mechanism and photocatalytic properties of pancake-like Cd(OH)2 superstructures, Crystengcomm 14(10) (2012) 3495-3500.

DOI: 10.1039/c2ce06622j

Google Scholar

[19] I. Ichinose, K. Kurashima, T. Kunitake, Spontaneous formation of cadmium hydroxide nanostrands in water, Journal of the American Chemical Society 126(23) (2004) 7162-7163.

DOI: 10.1021/ja049141h

Google Scholar

[20] M. Rashad, H.M. Kotb, S. Helali, M.M. Ahmad, A.E. Albalawi, N.S. Alatawi, B. Al-Faqiri, A.M. Alsharari, A.M. Abd-Elnaiem, Structural analysis and photocatalytic degradation towards methylene blue using (Nb0.5Si0.5)xTi1-xO2 nanocomposites, Ceramics International 50(1) (2024) 512-525.

DOI: 10.1016/j.ceramint.2023.10.127

Google Scholar

[21] M.E. Malefane, P.J. Mafa, P.P. Mamba, M. Managa, T.T.I. Nkambule, A.T. Kuvarega, Induced S-scheme CoMn-LDH/C-MgO for advanced oxidation of amoxicillin under visible light, Chemical Engineering Journal 480(15) (2024) 148250.

DOI: 10.1016/j.cej.2023.148250

Google Scholar

[22] H.D. Lutz, H. Moller, M. Schmidt, Lattice Vibration-Spectra.82. Brucite-Type Hydroxides M(OH)2 (M=Ca, Mn, Co, Fe, Cd) - Ir and Raman-Spectra, Neutron-Diffraction of Fe(OH)2, Journal of Molecular Structure 328 (1994) 121-132.

DOI: 10.1016/0022-2860(94)08355-x

Google Scholar

[23] V.I. Burkov, A.V. Egorysheva, Y.F. Kargin, Optical and chiro-optical properties of crystals with sillenite structure, Crystallography Reports 46(2) (2001) 312-335.

DOI: 10.1134/1.1358415

Google Scholar

[24] H. Sekhar, D.N. Rao, Preparation, structural and linear optical properties of zinc sillenite (Bi12.66Zn0.33O19.33) nanocrystals, Journal of Materials Science-Materials in Electronics 24(5) (2013) 1569-1574.

DOI: 10.1007/s10854-012-0977-1

Google Scholar

[25] A.M. Burger, L.Y. Gao, R. Agarwal, A. Aprelev, J.E. Spanier, A.M. Rappe, V.M. Fridkin, Shift photovoltaic current and magnetically induced bulk photocurrent in piezoelectric sillenite crystals, Physical Review B 102(8) (2020) 081113(R).

DOI: 10.1103/physrevb.102.081113

Google Scholar

[26] V.R. Preethi, R. Radha, R.K. Vinod, S. Balakumar, B. Gupta, S. Singh, Controlled synthesis of photoactive gallium based sillenite single crystal and its application in environmental remediation, Solar Energy 220 (2021) 890-900.

DOI: 10.1016/j.solener.2021.03.060

Google Scholar

[27] M.I. Diez-Garcia, R. Gomez, Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy, ACS Appl Mater Interfaces 8(33) (2016) 21387-97.

DOI: 10.1021/acsami.6b07465

Google Scholar

[28] K.K. Bera, A. Chowdhury, S.K. Bera, M.R. Das, A. Roy, S. Das, S.K. Bhattacharya, Pd Nanoparticle-Decorated Novel Ternary Bi2O2CO3-Bi2MoO6-CuO Heterojunction for Enhanced Photo-electrocatalytic Ethanol Oxidation, Acs Omega 8(31) (2023) 28419-28435.

DOI: 10.1021/acsomega.3c02669

Google Scholar

[29] P. Rawat, R. Nagarajan, Cd(OH)F: Synthesis, structure, optical and photocatalytic properties, Journal of Fluorine Chemistry 182 (2016) 98-103.

DOI: 10.1016/j.jfluchem.2015.12.006

Google Scholar