[1]
M.X. Zhu, L. Lee, H.H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud, Journal of Hazardous Materials 149(3) (2007) 735-741.
DOI: 10.1016/j.jhazmat.2007.04.037
Google Scholar
[2]
J. Tie, Z. Zheng, G. Li, N.N. Geng, L. Hu, Removal of an anionic azo dye direct black 19 from water using white mustard seed (Semen sinapis) protein as a natural coagulant, Journal of Water Reuse and Desalination 9(4) (2019) 442-451.
DOI: 10.2166/wrd.2019.018
Google Scholar
[3]
N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques, Reviews in Environmental Science and Bio/Technology 19(3) (2020) 543-560.
DOI: 10.1007/s11157-020-09543-z
Google Scholar
[4]
L. Bilińska, M. Gmurek, Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions, Water Resources and Industry 26 (2021) 100160.
DOI: 10.1016/j.wri.2021.100160
Google Scholar
[5]
E.N. Zare, S. Iftekhar, Y. Park, J. Joseph, V. Srivastava, M.A. Khan, P. Makvandi, M. Sillanpaa, R.S. Varma, An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants, Chemosphere 280 (2021) 130907.
DOI: 10.1016/j.chemosphere.2021.130907
Google Scholar
[6]
Y.J. Lai, D.J. Lee, Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: A review, Chemosphere 282 (2021) 131059.
DOI: 10.1016/j.chemosphere.2021.131059
Google Scholar
[7]
M. Saeed, M. Muneer, A. ul Haq, N. Akram, Photocatalysis: an effective tool for photodegradation of dyes-a review, Environmental Science and Pollution Research 29(1) (2022) 293-311.
DOI: 10.1007/s11356-021-16389-7
Google Scholar
[8]
L. Sruthi, B. Janani, S. Sudheer Khan, Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: A review, Separation and Purification Technology 279 (2021) 119709-1197026.
DOI: 10.1016/j.seppur.2021.119709
Google Scholar
[9]
Y. Zhao, Y. Li, L. Sun, Recent advances in photocatalytic decomposition of water and pollutants for sustainable application, Chemosphere 276 (2021) 130201.
DOI: 10.1016/j.chemosphere.2021.130201
Google Scholar
[10]
M.F. Ehsan, S. Bashir, S. Hamid, A. Zia, Y. Abbas, K. Umbreen, M.N. Ashiq, A. Shah, One-pot facile synthesis of the ZnO/ZnSe heterostructures for efficient photocatalytic degradation of azo dye, Applied Surface Science 459 (2018) 194-200.
DOI: 10.1016/j.apsusc.2018.07.162
Google Scholar
[11]
X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu, Y. He, Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater, Journal of Colloid and Interface Science 607 (2022) 412-422.
DOI: 10.1016/j.jcis.2021.09.004
Google Scholar
[12]
H. Guan, Q. Wang, Y. Feng, H. Sun, W. Zhang, Y. Hu, Q. Zhong, Preparation of Binary Type II alpha-Bi2O3/Bi12TiO20 Cross-Shaped Heterojunction with Enhanced Visible Light Photocatalytic Performance, Acs Applied Electronic Materials 4(3) (2022) 1132-1142.
DOI: 10.1021/acsaelm.1c01249.s001
Google Scholar
[13]
L.Z. Pei, C.H. Yu, Z.Y. Xue, Y. Zhang, A Review on Ternary Bismuthate Nanoscale Materials, Recent Patents on Nanotechnology 15(2) (2021) 142-153.
DOI: 10.2174/1872210514666200929144352
Google Scholar
[14]
N. Kumada, A. Miura, T. Takei, S. Nishimoto, Y. Kameshima, M. Miyake, Y. Kuroiwa, C. Moriyoshi, Hydrothermal synthesis and crystal structure analysis of two new cadmium bismuthates, CdBi2O6 and Cd0.37Bi0.63O1.79, Journal of Asian Ceramic Societies 3(3) (2015) 251-254.
DOI: 10.1016/j.jascer.2015.04.003
Google Scholar
[15]
H. Najafian, F. Manteghi, F. Beshkar, M. Salavati-Niasari, Cd3Bi10O20 nanostructures: new facile synthesis, characterization and photocatalytic activity under visible light irradiation, Journal of Materials Science-Materials in Electronics 29(8) (2018) 6639-6647.
DOI: 10.1007/s10854-018-8649-4
Google Scholar
[16]
Y. Lu, M. Ye, F. Liu, G. Chen, L. Xu, X. Kong, Overview on the synthesis and applications of cadmium hydroxide nanomaterials, Journal of the Iranian Chemical Society 12(10) (2015) 1829-1840.
DOI: 10.1007/s13738-015-0658-0
Google Scholar
[17]
R. Sahraei, A. Mihandoost, G. Nabiyouni, A. Daneshfar, M. Roushani, M.H.M. Ara, Room temperature synthesis and characterization of ultralong Cd(OH)2 nanowires: a simple and template-free chemical route, Applied Physics a-Materials Science & Processing 109(2) (2012) 471-475.
DOI: 10.1007/s00339-012-7056-6
Google Scholar
[18]
Z.Q. Li, X.S. Lin, L. Zhang, X.T. Chen, Z.L. Xue, Microwave-assisted hydrothermal synthesis, growth mechanism and photocatalytic properties of pancake-like Cd(OH)2 superstructures, Crystengcomm 14(10) (2012) 3495-3500.
DOI: 10.1039/c2ce06622j
Google Scholar
[19]
I. Ichinose, K. Kurashima, T. Kunitake, Spontaneous formation of cadmium hydroxide nanostrands in water, Journal of the American Chemical Society 126(23) (2004) 7162-7163.
DOI: 10.1021/ja049141h
Google Scholar
[20]
M. Rashad, H.M. Kotb, S. Helali, M.M. Ahmad, A.E. Albalawi, N.S. Alatawi, B. Al-Faqiri, A.M. Alsharari, A.M. Abd-Elnaiem, Structural analysis and photocatalytic degradation towards methylene blue using (Nb0.5Si0.5)xTi1-xO2 nanocomposites, Ceramics International 50(1) (2024) 512-525.
DOI: 10.1016/j.ceramint.2023.10.127
Google Scholar
[21]
M.E. Malefane, P.J. Mafa, P.P. Mamba, M. Managa, T.T.I. Nkambule, A.T. Kuvarega, Induced S-scheme CoMn-LDH/C-MgO for advanced oxidation of amoxicillin under visible light, Chemical Engineering Journal 480(15) (2024) 148250.
DOI: 10.1016/j.cej.2023.148250
Google Scholar
[22]
H.D. Lutz, H. Moller, M. Schmidt, Lattice Vibration-Spectra.82. Brucite-Type Hydroxides M(OH)2 (M=Ca, Mn, Co, Fe, Cd) - Ir and Raman-Spectra, Neutron-Diffraction of Fe(OH)2, Journal of Molecular Structure 328 (1994) 121-132.
DOI: 10.1016/0022-2860(94)08355-x
Google Scholar
[23]
V.I. Burkov, A.V. Egorysheva, Y.F. Kargin, Optical and chiro-optical properties of crystals with sillenite structure, Crystallography Reports 46(2) (2001) 312-335.
DOI: 10.1134/1.1358415
Google Scholar
[24]
H. Sekhar, D.N. Rao, Preparation, structural and linear optical properties of zinc sillenite (Bi12.66Zn0.33O19.33) nanocrystals, Journal of Materials Science-Materials in Electronics 24(5) (2013) 1569-1574.
DOI: 10.1007/s10854-012-0977-1
Google Scholar
[25]
A.M. Burger, L.Y. Gao, R. Agarwal, A. Aprelev, J.E. Spanier, A.M. Rappe, V.M. Fridkin, Shift photovoltaic current and magnetically induced bulk photocurrent in piezoelectric sillenite crystals, Physical Review B 102(8) (2020) 081113(R).
DOI: 10.1103/physrevb.102.081113
Google Scholar
[26]
V.R. Preethi, R. Radha, R.K. Vinod, S. Balakumar, B. Gupta, S. Singh, Controlled synthesis of photoactive gallium based sillenite single crystal and its application in environmental remediation, Solar Energy 220 (2021) 890-900.
DOI: 10.1016/j.solener.2021.03.060
Google Scholar
[27]
M.I. Diez-Garcia, R. Gomez, Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy, ACS Appl Mater Interfaces 8(33) (2016) 21387-97.
DOI: 10.1021/acsami.6b07465
Google Scholar
[28]
K.K. Bera, A. Chowdhury, S.K. Bera, M.R. Das, A. Roy, S. Das, S.K. Bhattacharya, Pd Nanoparticle-Decorated Novel Ternary Bi2O2CO3-Bi2MoO6-CuO Heterojunction for Enhanced Photo-electrocatalytic Ethanol Oxidation, Acs Omega 8(31) (2023) 28419-28435.
DOI: 10.1021/acsomega.3c02669
Google Scholar
[29]
P. Rawat, R. Nagarajan, Cd(OH)F: Synthesis, structure, optical and photocatalytic properties, Journal of Fluorine Chemistry 182 (2016) 98-103.
DOI: 10.1016/j.jfluchem.2015.12.006
Google Scholar