[1]
L. Lin, H. Yang, X. Xu, Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review, Frontiers in environmental science. 10 (2022) 880246.
Google Scholar
[2]
R. Qadri, M.A. Faiq, Freshwater Pollution: Effects on Aquatic Life and Human Health, Fresh water pollution dynamics and remediation. (2020) 15-26.
DOI: 10.1007/978-981-13-8277-2_2
Google Scholar
[3]
M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, A.-S. Nizami, B.-H. Jeon, Y.-K. Park, A Review on Recent Advances in the Treatment of Dye-Polluted Wastewater, Journal of Industrial and Engineering Chemistry. 112 (2022) 1-19.
DOI: 10.1016/j.jiec.2022.05.013
Google Scholar
[4]
V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of Various Recent Wastewater Dye Removal Methods: A Review, Journal of environmental chemical engineering. 6 (2018) 4676-4697.
DOI: 10.1016/j.jece.2018.06.060
Google Scholar
[5]
R. Rashid, I. Shafiq, P. Akhter, M.J. Iqbal, M. Hussain, A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method, Environmental Science and Pollution Research. 28 (2021) 9050-9066.
DOI: 10.1007/s11356-021-12395-x
Google Scholar
[6]
D. Ayodhya, G. Veerabhadram, A Review on Recent Advances in Photodegradation of Dyes Using Doped and Heterojunction Based Semiconductor Metal Sulfide Nanostructures for Environmental Protection, Materials today energy. 9 (2018) 83-113.
DOI: 10.1016/j.mtener.2018.05.007
Google Scholar
[7]
T.Y. Ahmed, S.B. Aziz, E.M. Dannoun, New Photocatalytic Materials Based on Alumina with Reduced Band Gap: A Dft Approach to Study the Band Structure and Optical Properties, Heliyon. 10 (2024).
DOI: 10.1016/j.heliyon.2024.e27029
Google Scholar
[8]
S.A. Mousa, D. Wissa, H. Hassan, A. Ebnalwaled, S. Khairy, Enhanced Photocatalytic Activity of Green Synthesized Zinc Oxide Nanoparticles Using Low-Cost Plant Extracts, Scientific Reports. 14 (2024) 16713.
DOI: 10.1038/s41598-024-66975-1
Google Scholar
[9]
S. Kumar, A. Kumar, T. Malhotra, S. Verma, Characterization of Structural, Optical and Photocatalytic Properties of Silver Modified Hematite (Α-Fe2o3) Nanocatalyst, Journal of Alloys and Compounds. 904 (2022) 164006.
DOI: 10.1016/j.jallcom.2022.164006
Google Scholar
[10]
J. Wang, Z. Wang, W. Wang, Y. Wang, X. Hu, J. Liu, X. Gong, W. Miao, L. Ding, X. Li, Synthesis, Modification and Application of Titanium Dioxide Nanoparticles: A Review, Nanoscale. 14 (2022) 6709-6734.
DOI: 10.1039/d1nr08349j
Google Scholar
[11]
J. Mathai, Investigation of Non Linear and Photocatalytic Properties of Pristine and Cr Doped Zno Nanorods. (2022).
Google Scholar
[12]
Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and Applications of Zinc Oxide Based Photocatalytic Materials, Advanced Sensor and Energy Materials. (2023) 100069.
DOI: 10.1016/j.asems.2023.100069
Google Scholar
[13]
I. Kim, K. Viswanathan, G. Kasi, S. Thanakkasaranee, K. Sadeghi, J. Seo, Zno Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges, Food Reviews International. 38 (2022) 537-565.
DOI: 10.1080/87559129.2020.1737709
Google Scholar
[14]
F. Qiao, K. Sun, H. Chu, J. Wang, Y. Xie, L. Chen, T. Yan, Design Strategies of Zno Heterojunction Arrays Towards Effective Photovoltaic Applications, Battery Energy. 1 (2022) 20210008.
DOI: 10.1002/bte2.20210008
Google Scholar
[15]
A. Piras, C. Olla, G. Reekmans, A.-S. Kelchtermans, D. De Sloovere, K. Elen, C.M. Carbonaro, L. Fusaro, P. Adriaensens, A. Hardy, Photocatalytic Performance of Undoped and Al-Doped Zno Nanoparticles in the Degradation of Rhodamine B under Uv-Visible Light: The Role of Defects and Morphology, International Journal of Molecular Sciences. 23 (2022) 15459.
DOI: 10.3390/ijms232415459
Google Scholar
[16]
C.B. Ong, L.Y. Ng, A.W. Mohammad, A Review of Zno Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications, Renewable and Sustainable Energy Reviews. 81 (2018) 536-551.
DOI: 10.1016/j.rser.2017.08.020
Google Scholar
[17]
A.W. Cohn, N. Janssen, J.M. Mayer, D.R. Gamelin, Photocharging Zno Nanocrystals: Picosecond Hole Capture, Electron Accumulation, and Auger Recombination, The Journal of Physical Chemistry C. 116 (2012) 20633-20642.
DOI: 10.1021/jp3075942
Google Scholar
[18]
M. Xu, Y. Chen, W. Hu, Y. Liu, Q. Zhang, H. Yuan, X. Wang, J. Zhang, K. Luo, J. Li, Designed Synthesis of Microstructure and Defect-Controlled Cu-Doped Zno–Ag Nanoparticles: Exploring High-Efficiency Sunlight-Driven Photocatalysts, Journal of Physics D: Applied Physics. 53 (2019) 025106.
DOI: 10.1088/1361-6463/ab4bfd
Google Scholar
[19]
S.A. Ayon, S. Hasan, M.M. Billah, S.S. Nishat, A. Kabir, Improved Luminescence and Photocatalytic Properties of Sm3+-Doped Zno Nanoparticles Via Modified Sol–Gel Route: A Unified Experimental and Dft+ U Approach, Journal of Rare Earths. 41 (2023) 550-560.
DOI: 10.1016/j.jre.2022.03.004
Google Scholar
[20]
A. Singh, F. Wan, K. Yadav, A. Salvi, P. Thakur, A. Thakur, Synergistic Effect of Zno Nanoparticles with Cu2+ Doping on Antibacterial and Photocatalytic Activity, Inorganic Chemistry Communications. 157 (2023) 111425.
DOI: 10.1016/j.inoche.2023.111425
Google Scholar
[21]
E.I. Naik, H.B. Naik, B.K. Swamy, R. Viswanath, I.S. Gowda, M. Prabhakara, K. Chetankumar, Influence of Cu Doping on Zno Nanoparticles for Improved Structural, Optical, Electrochemical Properties and Their Applications in Efficient Detection of Latent Fingerprints, Chemical Data Collections. 33 (2021) 100671.
DOI: 10.1016/j.cdc.2021.100671
Google Scholar
[22]
R. Ghorbali, G. Essalah, A. Ghoudi, H. Guermazi, S. Guermazi, A. El Hdiy, H. Benhayoune, B. Duponchel, A. Oueslati, G. Leroy, The Effect of (in, Cu) Doping and Co-Doping on Physical Properties and Organic Pollutant Photodegradation Efficiency of Zno Nanoparticles for Wastewater Remediation, Ceramics International. 49 (2023) 33828-33841.
DOI: 10.1016/j.ceramint.2023.08.076
Google Scholar
[23]
R. Beura, S. Rajendran, M.G. Pinilla, P. Thangadurai, Enhanced Photo-Induced Catalytic Activity of Cu Ion Doped Zno-Graphene Ternary Nanocomposite for Degrading Organic Dyes, Journal of Water Process Engineering. 32 (2019) 100966.
DOI: 10.1016/j.jwpe.2019.100966
Google Scholar
[24]
M.S. Hossain, M.Y.A. Mollah, M.A.B.H. Susan, M.M. Islam, Role of in Situ Electrogenerated Reactive Oxygen Species Towards Degradation of Organic Dye in Aqueous Solution, Electrochimica Acta. 344 (2020) 136146.
DOI: 10.1016/j.electacta.2020.136146
Google Scholar
[25]
L. Xiong, J. Tang, Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances, Advanced Energy Materials. 11 (2021) 2003216.
DOI: 10.1002/aenm.202003216
Google Scholar
[26]
A.F. El-Sayed, W.M. Aboulthana, M.A. Sherief, G.T. El-Bassyouni, S.M. Mousa, Synthesis, Structural, Molecular Docking, and in Vitro Biological Activities of Cu-Doped Zno Nanomaterials, Scientific Reports. 14 (2024) 9027.
DOI: 10.1038/s41598-024-59088-2
Google Scholar
[27]
A. Tsogoo, N. Tsedev, A. Gibaud, P. Daniel, A. Kassiba, M. Fukuda, Y. Kusano, M. Azuma, N. Tsogbadrakh, G. Ragchaa, Experimental and Ab Initio Studies on the Structural, Magnetic, Photocatalytic, and Antibacterial Properties of Cu-Doped Zno Nanoparticles, RSC advances. 13 (2023) 1256-1266.
DOI: 10.1039/d2ra07204a
Google Scholar
[28]
J. Ramos-Zúñiga, N. Bruna, J.M. Pérez-Donoso, Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses, International Journal of Molecular Sciences. 24 (2023) 10503.
DOI: 10.3390/ijms241310503
Google Scholar
[29]
B. Bharti, H. Li, Z. Ren, R. Zhu, Z. Zhu, Recent Advances in Sterilization and Disinfection Technology: A Review, Chemosphere. 308 (2022) 136404.
DOI: 10.1016/j.chemosphere.2022.136404
Google Scholar
[30]
A. Zaater, M.O. Serhoud, I. Ben Amor, S. Zeghoud, A. Hemmami, A. Rebiai, Y. Bouras, A.T. Laiche, A. Alsalme, D. Cornu, Exploring the Potential of a Ephedra Alata Leaf Extract: Phytochemical Analysis, Antioxidant Activity, Antibacterial Properties, and Green Synthesis of Zno Nanoparticles for Photocatalytic Degradation of Methylene Blue, Frontiers in Chemistry. 12 (2024) 1367552.
DOI: 10.3389/fchem.2024.1367552
Google Scholar
[31]
P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, A Review on Bio-Synthesized Zinc Oxide Nanoparticles Using Plant Extracts as Reductants and Stabilizing Agents, Journal of Photochemistry and Photobiology B: Biology. 183 (2018) 201-221.
DOI: 10.1016/j.jphotobiol.2018.04.036
Google Scholar
[32]
S. Waseem, Z.U. Nisa, T. Zeeshan, M.D. Ali, T. Begum, Z.N. Kayani, I. Ali, A. Ayub, Green Synthesis of Zno Nanoparticles Using Nigella Sativa Seed Extract for Antibacterial Activities, Nano-Structures & Nano-Objects. 38 (2024) 101212.
DOI: 10.1016/j.nanoso.2024.101212
Google Scholar
[33]
S. Sasi, P.F. Fasna, T.B. Sharmila, C.J. Chandra, J.V. Antony, V. Raman, A.B. Nair, H.N. Ramanathan, Green Synthesis of Zno Nanoparticles with Enhanced Photocatalytic and Antibacterial Activity, Journal of Alloys and Compounds. 924 (2022) 166431.
DOI: 10.1016/j.jallcom.2022.166431
Google Scholar
[34]
H. Sadiq, F. Sher, S. Sehar, E.C. Lima, S. Zhang, H.M. Iqbal, F. Zafar, M. Nuhanović, Green Synthesis of Zno Nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications, Journal of Molecular Liquids. 335 (2021) 116567.
DOI: 10.1016/j.molliq.2021.116567
Google Scholar
[35]
F.V. Molefe, L.F. Koao, B.F. Dejene, H.C. Swart, Phase Formation of Hexagonal Wurtzite Zno through Decomposition of Zn (Oh) 2 at Various Growth Temperatures Using Cbd Method, Optical materials. 46 (2015) 292-298.
DOI: 10.1016/j.optmat.2015.04.034
Google Scholar
[36]
K.V. Chandekar, M. Shkir, B.M. Al-Shehri, S. AlFaify, R.G. Halor, A. Khan, K.S. Al-Namshah, M.S. Hamdy, Visible Light Sensitive Cu Doped Zno: Facile Synthesis, Characterization and High Photocatalytic Response, Materials Characterization. 165 (2020) 110387.
DOI: 10.1016/j.matchar.2020.110387
Google Scholar
[37]
M. Ahmad, E. Ahmed, Z. Hong, X. Jiao, T. Abbas, N. Khalid, Enhancement in Visible Light-Responsive Photocatalytic Activity by Embedding Cu-Doped Zno Nanoparticles on Multi-Walled Carbon Nanotubes, Applied Surface Science. 285 (2013) 702-712.
DOI: 10.1016/j.apsusc.2013.08.114
Google Scholar
[38]
P.G. Devi, A.S. Velu, Synthesis, Structural and Optical Properties of Pure Zno and Co- Doped Zno Nanoparticles Prepared by the Co-Precipitation Method, Journal of Theoretical and Applied Physics. 10 (2016) 233-240.
DOI: 10.1007/s40094-016-0221-0
Google Scholar
[39]
Y. Zhou, Y. Rao, L. Zhang, S. Ju, H. Wang, Machine-Learning Prediction of Vegard's Law Factor and Volume Size Factor for Binary Substitutional Metallic Solid Solutions, Acta Materialia. 237 (2022) 118166.
DOI: 10.1016/j.actamat.2022.118166
Google Scholar
[40]
S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-Doped Zno Nanoparticles: Synthesis, Structural and Electrical Properties, Physica B: Condensed Matter. 407 (2012) 1223-1226.
DOI: 10.1016/j.physb.2012.01.103
Google Scholar
[41]
Y. Qi, A. Kosinova, A.R. Kilmametov, B.B. Straumal, E. Rabkin, Plastic Flow and Microstructural Instabilities During High-Pressure Torsion of Cu/Zno Composites, Materials Characterization. 145 (2018) 389-401.
DOI: 10.1016/j.matchar.2018.09.001
Google Scholar
[42]
M.S. Sharrouf, Preparation and Characterization of Magnetic Diluted Semiconductors Samples. (2015).
Google Scholar
[43]
L. Umaralikhan, M.J.M. Jaffar, Green Synthesis of Zno and Mg Doped Zno Nanoparticles, and Its Optical Properties, Journal of Materials Science: Materials in Electronics. 28 (2017) 7677-7685.
DOI: 10.1007/s10854-017-6461-1
Google Scholar
[44]
D.A. Wilson, K. Gurung, M.A. Langell, Effect of Zinc Substitution on the Growth Morphology of Zno-Cuo Tenorite Solid Solutions, Journal of Crystal Growth. 562 (2021) 126062.
DOI: 10.1016/j.jcrysgro.2021.126062
Google Scholar
[45]
R. Priya, P. Sahay, N. Saxena, P. Rajput, V. Chawla, R. Sharma, O. Sinha, R. Krishna, Systematic Study of Ni, Cu Co-Doped Zno Nanoparticles for Uv Photodetector Application, Journal of Materials Science: Materials in Electronics. 32 (2021) 2011-2025.
DOI: 10.1007/s10854-020-04968-2
Google Scholar
[46]
A.M. Abd-Elnaiem, M. Rashad, T. Hanafy, N. Shaalan, Improvement of Optical Properties of Functionalized Polyvinyl Alcohol-Zinc Oxide Hybrid Nanocomposites for Wide Uv Optoelectronic Applications, Journal of Inorganic and Organometallic Polymers and Materials. 33 (2023) 2429-2444.
DOI: 10.1007/s10904-023-02616-w
Google Scholar
[47]
A. Bourebia, A. Bouaine, H. Guendouz, Appearance of Amorphous Phase in Crystalline in-Y Codoped Zno Thin Films, Bulletin of Materials Science. 47 (2024) 89.
DOI: 10.1007/s12034-024-03146-y
Google Scholar
[48]
A. Trovarelli, J. Llorca, Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis?, ACS catalysis. 7 (2017) 4716-4735.
DOI: 10.1021/acscatal.7b01246
Google Scholar
[49]
P. Labhane, V. Huse, L. Patle, A. Chaudhari, G. Sonawane, Synthesis of Cu Doped Zno Nanoparticles: Crystallographic, Optical, Ftir, Morphological and Photocatalytic Study, Journal of Materials Science and Chemical Engineering. 3 (2015) 39-51.
DOI: 10.4236/msce.2015.37005
Google Scholar
[50]
M. Barhoush, A.K.M. Alsmadi, B. Salameh, M. Shatnawi, G. Alna'washi, Role of Defects in Tailoring Optical, Electronic, and Luminescent Properties of Cu-Doped Zno Films, Ceramics International. 49 (2023) 32538-32548.
DOI: 10.1016/j.ceramint.2023.07.218
Google Scholar
[51]
S. Sivakumar, Y. Robinson, N.A. Mala, Studies on Photocatalytic Performance and Supercapacitor Applications of Undoped and Cu-Doped Zno Nanoparticles, Applied Surface Science Advances. 12 (2022) 100344.
DOI: 10.1016/j.apsadv.2022.100344
Google Scholar
[52]
C. Kranert, Investigation of Wide-Bandgap Semiconductors by Uv Raman Spectroscopy: Resonance Effects and Material Characterization. (2015).
Google Scholar
[53]
V.M. Lage, C. Rodríguez-Fernández, F.S. Vieira, R.T. da Silva, M.I.B. Bernardi, M.M. de Lima Jr, A. Cantarero, H.B. de Carvalho, On the Vibrational Properties of Transition Metal Doped Zno: Surface, Defect, and Bandgap Engineering, Acta Materialia. 259 (2023) 119258.
DOI: 10.1016/j.actamat.2023.119258
Google Scholar
[54]
V. Gurylev, T.P. Perng, Defect Engineering of Zno: Review on Oxygen and Zinc Vacancies, Journal of the European Ceramic Society. 41 (2021) 4977-4996.
DOI: 10.1016/j.jeurceramsoc.2021.03.031
Google Scholar
[55]
M.K. Gora, A. Kumar, S. Kumar, J. Nehra, B.L. Choudhary, S.N. Dolia, R.K. Singhal, The Study of Optical, Structural and Magnetic Properties of Cu-Doped Zno Nanoparticles, Journal of Materials Science: Materials in Electronics. 34 (2023) 288.
DOI: 10.1007/s10854-022-09713-5
Google Scholar
[56]
J. Marselie, V. Fauzia, I. Sugihartono, The Effect of Cu Dopant on Morphological, Structural and Optical Properties of Zno Nanorods Grown on Indium Tin Oxide Substrate, Journal of Physics: Conference Series, IOP Publishing, 2017, p.012014.
DOI: 10.1088/1742-6596/817/1/012014
Google Scholar
[57]
M. Dhonde, K. Sahu, V. Murty, S.S. Nemala, P. Bhargava, Surface Plasmon Resonance Effect of Cu Nanoparticles in a Dye Sensitized Solar Cell, Electrochimica Acta. 249 (2017) 89-95.
DOI: 10.1016/j.electacta.2017.07.187
Google Scholar
[58]
P.R. Jubu, O. Obaseki, A. Nathan-Abutu, F. Yam, Y. Yusof, M. Ochang, Dispensability of the Conventional Tauc's Plot for Accurate Bandgap Determination from Uv–Vis Optical Diffuse Reflectance Data, Results in Optics. 9 (2022) 100273.
DOI: 10.1016/j.rio.2022.100273
Google Scholar
[59]
H. Guendouz, A. Bouaine, N. Brihi, Ultrawide Bandgap High near Ultraviolet Transparency Amorphous Sn–Al Co-Doped Zno Thin Films, Journal of Non-Crystalline Solids. 569 (2021) 121001.
DOI: 10.1016/j.jnoncrysol.2021.121001
Google Scholar
[60]
A. Khalid, P. Ahmad, A. Khan, Effect of Cu Doping on Zno Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater (Retraction of Vol 2022, Art No 9459886, 2022), HINDAWI LTD ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND, 2023.
Google Scholar
[61]
J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, Properties and Applications of Zno Nanomaterials with Oxygen Vacancies: A Review, Ceramics International. 44 (2018) 7357-7377.
DOI: 10.1016/j.ceramint.2018.02.013
Google Scholar
[62]
N. Kochnev, D. Tkachenko, D. Kirsanov, N. Bobrysheva, M. Osmolowsky, M. Voznesenskiy, O. Osmolovskaya, Regulation and Prediction of Defect-Related Properties in Zno Nanosheets: Synthesis, Morphological and Structural Parameters, Dft Study and Qspr Modelling, Applied Surface Science. 621 (2023) 156828.
DOI: 10.1016/j.apsusc.2023.156828
Google Scholar
[63]
V. Shanmugam, K.S. Jeyaperumal, Investigations of Visible Light Driven Sn and Cu Doped Zno Hybrid Nanoparticles for Photocatalytic Performance and Antibacterial Activity, Applied Surface Science. 449 (2018) 617-630.
DOI: 10.1016/j.apsusc.2017.11.167
Google Scholar
[64]
Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Surface Oxygen Vacancy Defect-Promoted Electron-Hole Separation for Porous Defective Zno Hexagonal Plates and Enhanced Solar-Driven Photocatalytic Performance, Chemical Engineering Journal. 379 (2020) 122295.
DOI: 10.1016/j.cej.2019.122295
Google Scholar
[65]
A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R.I. Faruque, I.U. Din, M.A. Alotaibi, A. Khan, Synergistic Effects of Cu-Doped Zno Nanoantibiotic against Gram-Positive Bacterial Strains, Plos one. 16 (2021) e0251082.
DOI: 10.1371/journal.pone.0251082
Google Scholar
[66]
T.D. Tavares, J.C. Antunes, J. Padrão, A.I. Ribeiro, A. Zille, M.T.P. Amorim, F. Ferreira, H.P. Felgueiras, Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria, Antibiotics. 9 (2020) 314.
DOI: 10.3390/antibiotics9060314
Google Scholar
[67]
W. Wei, J. Li, Z. Liu, Y. Deng, D. Chen, P. Gu, G. Wang, X. Fan, Distinct Antibacterial Activity of a Vertically Aligned Graphene Coating against Gram-Positive and Gram-Negative Bacteria, Journal of Materials Chemistry B. 8 (2020) 6069-6079.
DOI: 10.1039/d0tb00417k
Google Scholar
[68]
C.A. Juan, J.M. Pérez de la Lastra, F.J. Plou, E. Pérez-Lebeña, The Chemistry of Reactive Oxygen Species (Ros) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies, International journal of molecular sciences. 22 (2021) 4642.
DOI: 10.3390/ijms22094642
Google Scholar
[69]
X. Bai, Y. Cao, B. Zhu, R. Liu, J. Dong, H. Yang, Enhancement of Photocatalytic Antimicrobial Performance Via Generation and Diffusion of Ros, Science for Energy and Environment. (2024) 7-7.
DOI: 10.53941/see.2024.100007
Google Scholar
[70]
M. Benamara, K.I. Nassar, M. Essid, S. Frick, R. Rugmini, K. Sekhar, J.P. Silva, Visible Light-Driven Removal of Rhodamine B Using Indium-Doped Zinc Oxide Prepared by Sol–Gel Method, Journal of Sol-Gel Science and Technology. 111 (2024) 553-565.
DOI: 10.1007/s10971-024-06471-0
Google Scholar
[71]
T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam, R. Selvaraj, Photocatalytic Degradation of Rhodamine B by Zinc Oxide Nanoparticles Synthesized Using the Leaf Extract of Cyanometra Ramiflora, Journal of photochemistry and Photobiology B: Biology. 199 (2019) 111621.
DOI: 10.1016/j.jphotobiol.2019.111621
Google Scholar
[72]
M. Rafique, R. Tahir, N. Khalid, M.B. Tahir, M. Irshad, S. Gillani, A. Usman, K. Shahzad, A. Mahmood Ali, S. Muhammad, Hydrothermal Synthesis of an Efficient and Visible Light Responsive Pure and Strontium Doped Zinc Oxide Nano-Hexagonal Photocatalysts for Photodegradation of Rhodamine B Dye, Applied Nanoscience. 11 (2021) 1045-1056.
DOI: 10.1007/s13204-021-01669-y
Google Scholar