Evaluation of the Photocatalytic and Antimicrobial Properties of Cu-Doped ZnO Nanoparticles Synthesized by Phytochemical Methods

Article Preview

Abstract:

In this study, zinc oxide (ZnO) and copper-doped zinc oxide nanoparticles (Cu-ZnO NPs) were synthesized using a green method that employed Rosmarinus officinalis leaf extract as a reducing agent. Copper was incorporated as a dopant at concentrations of 3% and 5%. Zinc acetate dihydrate and copper acetate served as the precursors and dopants, respectively. The synthesized samples were characterized utilizing a range of techniques, including XRD, SEM, EDX, Raman spectroscopy, UV-visible spectroscopy, and PL spectroscopy. XRD and Raman spectroscopy analyses validated the effective incorporation of Cu²⁺ ions into the ZnO wurtzite structure. SEM analysis indicated that the nanoparticles displayed a spherical morphology, while EDX analysis confirmed the presence of zinc (Zn), copper (Cu), and oxygen (O), thereby validating the sample's purity. UV-visible spectra revealed a reduction in the optical band gap with increasing Cu concentration. Photoluminescence peaks observed at 383 nm and 565 nm were ascribed to electron transitions from deep donor levels, particularly from Zn interstitials to Zn and oxygen vacancies. The 5% Cu-doped ZnO NPs demonstrated the highest photocatalytic activity, achieving 90% degradation of Rhodamine B (RhB) dye under UV irradiation in 135 minutes. They also exhibited significant antibacterial activity, particularly against Gram-positive bacteria (Staphylococcus aureus) compared to Gram-negative bacteria (Escherichia coli).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-94

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Lin, H. Yang, X. Xu, Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review, Frontiers in environmental science. 10 (2022) 880246.

Google Scholar

[2] R. Qadri, M.A. Faiq, Freshwater Pollution: Effects on Aquatic Life and Human Health, Fresh water pollution dynamics and remediation. (2020) 15-26.

DOI: 10.1007/978-981-13-8277-2_2

Google Scholar

[3] M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, A.-S. Nizami, B.-H. Jeon, Y.-K. Park, A Review on Recent Advances in the Treatment of Dye-Polluted Wastewater, Journal of Industrial and Engineering Chemistry. 112 (2022) 1-19.

DOI: 10.1016/j.jiec.2022.05.013

Google Scholar

[4] V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of Various Recent Wastewater Dye Removal Methods: A Review, Journal of environmental chemical engineering. 6 (2018) 4676-4697.

DOI: 10.1016/j.jece.2018.06.060

Google Scholar

[5] R. Rashid, I. Shafiq, P. Akhter, M.J. Iqbal, M. Hussain, A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method, Environmental Science and Pollution Research. 28 (2021) 9050-9066.

DOI: 10.1007/s11356-021-12395-x

Google Scholar

[6] D. Ayodhya, G. Veerabhadram, A Review on Recent Advances in Photodegradation of Dyes Using Doped and Heterojunction Based Semiconductor Metal Sulfide Nanostructures for Environmental Protection, Materials today energy. 9 (2018) 83-113.

DOI: 10.1016/j.mtener.2018.05.007

Google Scholar

[7] T.Y. Ahmed, S.B. Aziz, E.M. Dannoun, New Photocatalytic Materials Based on Alumina with Reduced Band Gap: A Dft Approach to Study the Band Structure and Optical Properties, Heliyon. 10 (2024).

DOI: 10.1016/j.heliyon.2024.e27029

Google Scholar

[8] S.A. Mousa, D. Wissa, H. Hassan, A. Ebnalwaled, S. Khairy, Enhanced Photocatalytic Activity of Green Synthesized Zinc Oxide Nanoparticles Using Low-Cost Plant Extracts, Scientific Reports. 14 (2024) 16713.

DOI: 10.1038/s41598-024-66975-1

Google Scholar

[9] S. Kumar, A. Kumar, T. Malhotra, S. Verma, Characterization of Structural, Optical and Photocatalytic Properties of Silver Modified Hematite (Α-Fe2o3) Nanocatalyst, Journal of Alloys and Compounds. 904 (2022) 164006.

DOI: 10.1016/j.jallcom.2022.164006

Google Scholar

[10] J. Wang, Z. Wang, W. Wang, Y. Wang, X. Hu, J. Liu, X. Gong, W. Miao, L. Ding, X. Li, Synthesis, Modification and Application of Titanium Dioxide Nanoparticles: A Review, Nanoscale. 14 (2022) 6709-6734.

DOI: 10.1039/d1nr08349j

Google Scholar

[11] J. Mathai, Investigation of Non Linear and Photocatalytic Properties of Pristine and Cr Doped Zno Nanorods. (2022).

Google Scholar

[12] Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and Applications of Zinc Oxide Based Photocatalytic Materials, Advanced Sensor and Energy Materials. (2023) 100069.

DOI: 10.1016/j.asems.2023.100069

Google Scholar

[13] I. Kim, K. Viswanathan, G. Kasi, S. Thanakkasaranee, K. Sadeghi, J. Seo, Zno Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges, Food Reviews International. 38 (2022) 537-565.

DOI: 10.1080/87559129.2020.1737709

Google Scholar

[14] F. Qiao, K. Sun, H. Chu, J. Wang, Y. Xie, L. Chen, T. Yan, Design Strategies of Zno Heterojunction Arrays Towards Effective Photovoltaic Applications, Battery Energy. 1 (2022) 20210008.

DOI: 10.1002/bte2.20210008

Google Scholar

[15] A. Piras, C. Olla, G. Reekmans, A.-S. Kelchtermans, D. De Sloovere, K. Elen, C.M. Carbonaro, L. Fusaro, P. Adriaensens, A. Hardy, Photocatalytic Performance of Undoped and Al-Doped Zno Nanoparticles in the Degradation of Rhodamine B under Uv-Visible Light: The Role of Defects and Morphology, International Journal of Molecular Sciences. 23 (2022) 15459.

DOI: 10.3390/ijms232415459

Google Scholar

[16] C.B. Ong, L.Y. Ng, A.W. Mohammad, A Review of Zno Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications, Renewable and Sustainable Energy Reviews. 81 (2018) 536-551.

DOI: 10.1016/j.rser.2017.08.020

Google Scholar

[17] A.W. Cohn, N. Janssen, J.M. Mayer, D.R. Gamelin, Photocharging Zno Nanocrystals: Picosecond Hole Capture, Electron Accumulation, and Auger Recombination, The Journal of Physical Chemistry C. 116 (2012) 20633-20642.

DOI: 10.1021/jp3075942

Google Scholar

[18] M. Xu, Y. Chen, W. Hu, Y. Liu, Q. Zhang, H. Yuan, X. Wang, J. Zhang, K. Luo, J. Li, Designed Synthesis of Microstructure and Defect-Controlled Cu-Doped Zno–Ag Nanoparticles: Exploring High-Efficiency Sunlight-Driven Photocatalysts, Journal of Physics D: Applied Physics. 53 (2019) 025106.

DOI: 10.1088/1361-6463/ab4bfd

Google Scholar

[19] S.A. Ayon, S. Hasan, M.M. Billah, S.S. Nishat, A. Kabir, Improved Luminescence and Photocatalytic Properties of Sm3+-Doped Zno Nanoparticles Via Modified Sol–Gel Route: A Unified Experimental and Dft+ U Approach, Journal of Rare Earths. 41 (2023) 550-560.

DOI: 10.1016/j.jre.2022.03.004

Google Scholar

[20] A. Singh, F. Wan, K. Yadav, A. Salvi, P. Thakur, A. Thakur, Synergistic Effect of Zno Nanoparticles with Cu2+ Doping on Antibacterial and Photocatalytic Activity, Inorganic Chemistry Communications. 157 (2023) 111425.

DOI: 10.1016/j.inoche.2023.111425

Google Scholar

[21] E.I. Naik, H.B. Naik, B.K. Swamy, R. Viswanath, I.S. Gowda, M. Prabhakara, K. Chetankumar, Influence of Cu Doping on Zno Nanoparticles for Improved Structural, Optical, Electrochemical Properties and Their Applications in Efficient Detection of Latent Fingerprints, Chemical Data Collections. 33 (2021) 100671.

DOI: 10.1016/j.cdc.2021.100671

Google Scholar

[22] R. Ghorbali, G. Essalah, A. Ghoudi, H. Guermazi, S. Guermazi, A. El Hdiy, H. Benhayoune, B. Duponchel, A. Oueslati, G. Leroy, The Effect of (in, Cu) Doping and Co-Doping on Physical Properties and Organic Pollutant Photodegradation Efficiency of Zno Nanoparticles for Wastewater Remediation, Ceramics International. 49 (2023) 33828-33841.

DOI: 10.1016/j.ceramint.2023.08.076

Google Scholar

[23] R. Beura, S. Rajendran, M.G. Pinilla, P. Thangadurai, Enhanced Photo-Induced Catalytic Activity of Cu Ion Doped Zno-Graphene Ternary Nanocomposite for Degrading Organic Dyes, Journal of Water Process Engineering. 32 (2019) 100966.

DOI: 10.1016/j.jwpe.2019.100966

Google Scholar

[24] M.S. Hossain, M.Y.A. Mollah, M.A.B.H. Susan, M.M. Islam, Role of in Situ Electrogenerated Reactive Oxygen Species Towards Degradation of Organic Dye in Aqueous Solution, Electrochimica Acta. 344 (2020) 136146.

DOI: 10.1016/j.electacta.2020.136146

Google Scholar

[25] L. Xiong, J. Tang, Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances, Advanced Energy Materials. 11 (2021) 2003216.

DOI: 10.1002/aenm.202003216

Google Scholar

[26] A.F. El-Sayed, W.M. Aboulthana, M.A. Sherief, G.T. El-Bassyouni, S.M. Mousa, Synthesis, Structural, Molecular Docking, and in Vitro Biological Activities of Cu-Doped Zno Nanomaterials, Scientific Reports. 14 (2024) 9027.

DOI: 10.1038/s41598-024-59088-2

Google Scholar

[27] A. Tsogoo, N. Tsedev, A. Gibaud, P. Daniel, A. Kassiba, M. Fukuda, Y. Kusano, M. Azuma, N. Tsogbadrakh, G. Ragchaa, Experimental and Ab Initio Studies on the Structural, Magnetic, Photocatalytic, and Antibacterial Properties of Cu-Doped Zno Nanoparticles, RSC advances. 13 (2023) 1256-1266.

DOI: 10.1039/d2ra07204a

Google Scholar

[28] J. Ramos-Zúñiga, N. Bruna, J.M. Pérez-Donoso, Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses, International Journal of Molecular Sciences. 24 (2023) 10503.

DOI: 10.3390/ijms241310503

Google Scholar

[29] B. Bharti, H. Li, Z. Ren, R. Zhu, Z. Zhu, Recent Advances in Sterilization and Disinfection Technology: A Review, Chemosphere. 308 (2022) 136404.

DOI: 10.1016/j.chemosphere.2022.136404

Google Scholar

[30] A. Zaater, M.O. Serhoud, I. Ben Amor, S. Zeghoud, A. Hemmami, A. Rebiai, Y. Bouras, A.T. Laiche, A. Alsalme, D. Cornu, Exploring the Potential of a Ephedra Alata Leaf Extract: Phytochemical Analysis, Antioxidant Activity, Antibacterial Properties, and Green Synthesis of Zno Nanoparticles for Photocatalytic Degradation of Methylene Blue, Frontiers in Chemistry. 12 (2024) 1367552.

DOI: 10.3389/fchem.2024.1367552

Google Scholar

[31] P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, A Review on Bio-Synthesized Zinc Oxide Nanoparticles Using Plant Extracts as Reductants and Stabilizing Agents, Journal of Photochemistry and Photobiology B: Biology. 183 (2018) 201-221.

DOI: 10.1016/j.jphotobiol.2018.04.036

Google Scholar

[32] S. Waseem, Z.U. Nisa, T. Zeeshan, M.D. Ali, T. Begum, Z.N. Kayani, I. Ali, A. Ayub, Green Synthesis of Zno Nanoparticles Using Nigella Sativa Seed Extract for Antibacterial Activities, Nano-Structures & Nano-Objects. 38 (2024) 101212.

DOI: 10.1016/j.nanoso.2024.101212

Google Scholar

[33] S. Sasi, P.F. Fasna, T.B. Sharmila, C.J. Chandra, J.V. Antony, V. Raman, A.B. Nair, H.N. Ramanathan, Green Synthesis of Zno Nanoparticles with Enhanced Photocatalytic and Antibacterial Activity, Journal of Alloys and Compounds. 924 (2022) 166431.

DOI: 10.1016/j.jallcom.2022.166431

Google Scholar

[34] H. Sadiq, F. Sher, S. Sehar, E.C. Lima, S. Zhang, H.M. Iqbal, F. Zafar, M. Nuhanović, Green Synthesis of Zno Nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications, Journal of Molecular Liquids. 335 (2021) 116567.

DOI: 10.1016/j.molliq.2021.116567

Google Scholar

[35] F.V. Molefe, L.F. Koao, B.F. Dejene, H.C. Swart, Phase Formation of Hexagonal Wurtzite Zno through Decomposition of Zn (Oh) 2 at Various Growth Temperatures Using Cbd Method, Optical materials. 46 (2015) 292-298.

DOI: 10.1016/j.optmat.2015.04.034

Google Scholar

[36] K.V. Chandekar, M. Shkir, B.M. Al-Shehri, S. AlFaify, R.G. Halor, A. Khan, K.S. Al-Namshah, M.S. Hamdy, Visible Light Sensitive Cu Doped Zno: Facile Synthesis, Characterization and High Photocatalytic Response, Materials Characterization. 165 (2020) 110387.

DOI: 10.1016/j.matchar.2020.110387

Google Scholar

[37] M. Ahmad, E. Ahmed, Z. Hong, X. Jiao, T. Abbas, N. Khalid, Enhancement in Visible Light-Responsive Photocatalytic Activity by Embedding Cu-Doped Zno Nanoparticles on Multi-Walled Carbon Nanotubes, Applied Surface Science. 285 (2013) 702-712.

DOI: 10.1016/j.apsusc.2013.08.114

Google Scholar

[38] P.G. Devi, A.S. Velu, Synthesis, Structural and Optical Properties of Pure Zno and Co- Doped Zno Nanoparticles Prepared by the Co-Precipitation Method, Journal of Theoretical and Applied Physics. 10 (2016) 233-240.

DOI: 10.1007/s40094-016-0221-0

Google Scholar

[39] Y. Zhou, Y. Rao, L. Zhang, S. Ju, H. Wang, Machine-Learning Prediction of Vegard's Law Factor and Volume Size Factor for Binary Substitutional Metallic Solid Solutions, Acta Materialia. 237 (2022) 118166.

DOI: 10.1016/j.actamat.2022.118166

Google Scholar

[40] S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-Doped Zno Nanoparticles: Synthesis, Structural and Electrical Properties, Physica B: Condensed Matter. 407 (2012) 1223-1226.

DOI: 10.1016/j.physb.2012.01.103

Google Scholar

[41] Y. Qi, A. Kosinova, A.R. Kilmametov, B.B. Straumal, E. Rabkin, Plastic Flow and Microstructural Instabilities During High-Pressure Torsion of Cu/Zno Composites, Materials Characterization. 145 (2018) 389-401.

DOI: 10.1016/j.matchar.2018.09.001

Google Scholar

[42] M.S. Sharrouf, Preparation and Characterization of Magnetic Diluted Semiconductors Samples. (2015).

Google Scholar

[43] L. Umaralikhan, M.J.M. Jaffar, Green Synthesis of Zno and Mg Doped Zno Nanoparticles, and Its Optical Properties, Journal of Materials Science: Materials in Electronics. 28 (2017) 7677-7685.

DOI: 10.1007/s10854-017-6461-1

Google Scholar

[44] D.A. Wilson, K. Gurung, M.A. Langell, Effect of Zinc Substitution on the Growth Morphology of Zno-Cuo Tenorite Solid Solutions, Journal of Crystal Growth. 562 (2021) 126062.

DOI: 10.1016/j.jcrysgro.2021.126062

Google Scholar

[45] R. Priya, P. Sahay, N. Saxena, P. Rajput, V. Chawla, R. Sharma, O. Sinha, R. Krishna, Systematic Study of Ni, Cu Co-Doped Zno Nanoparticles for Uv Photodetector Application, Journal of Materials Science: Materials in Electronics. 32 (2021) 2011-2025.

DOI: 10.1007/s10854-020-04968-2

Google Scholar

[46] A.M. Abd-Elnaiem, M. Rashad, T. Hanafy, N. Shaalan, Improvement of Optical Properties of Functionalized Polyvinyl Alcohol-Zinc Oxide Hybrid Nanocomposites for Wide Uv Optoelectronic Applications, Journal of Inorganic and Organometallic Polymers and Materials. 33 (2023) 2429-2444.

DOI: 10.1007/s10904-023-02616-w

Google Scholar

[47] A. Bourebia, A. Bouaine, H. Guendouz, Appearance of Amorphous Phase in Crystalline in-Y Codoped Zno Thin Films, Bulletin of Materials Science. 47 (2024) 89.

DOI: 10.1007/s12034-024-03146-y

Google Scholar

[48] A. Trovarelli, J. Llorca, Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis?, ACS catalysis. 7 (2017) 4716-4735.

DOI: 10.1021/acscatal.7b01246

Google Scholar

[49] P. Labhane, V. Huse, L. Patle, A. Chaudhari, G. Sonawane, Synthesis of Cu Doped Zno Nanoparticles: Crystallographic, Optical, Ftir, Morphological and Photocatalytic Study, Journal of Materials Science and Chemical Engineering. 3 (2015) 39-51.

DOI: 10.4236/msce.2015.37005

Google Scholar

[50] M. Barhoush, A.K.M. Alsmadi, B. Salameh, M. Shatnawi, G. Alna'washi, Role of Defects in Tailoring Optical, Electronic, and Luminescent Properties of Cu-Doped Zno Films, Ceramics International. 49 (2023) 32538-32548.

DOI: 10.1016/j.ceramint.2023.07.218

Google Scholar

[51] S. Sivakumar, Y. Robinson, N.A. Mala, Studies on Photocatalytic Performance and Supercapacitor Applications of Undoped and Cu-Doped Zno Nanoparticles, Applied Surface Science Advances. 12 (2022) 100344.

DOI: 10.1016/j.apsadv.2022.100344

Google Scholar

[52] C. Kranert, Investigation of Wide-Bandgap Semiconductors by Uv Raman Spectroscopy: Resonance Effects and Material Characterization. (2015).

Google Scholar

[53] V.M. Lage, C. Rodríguez-Fernández, F.S. Vieira, R.T. da Silva, M.I.B. Bernardi, M.M. de Lima Jr, A. Cantarero, H.B. de Carvalho, On the Vibrational Properties of Transition Metal Doped Zno: Surface, Defect, and Bandgap Engineering, Acta Materialia. 259 (2023) 119258.

DOI: 10.1016/j.actamat.2023.119258

Google Scholar

[54] V. Gurylev, T.P. Perng, Defect Engineering of Zno: Review on Oxygen and Zinc Vacancies, Journal of the European Ceramic Society. 41 (2021) 4977-4996.

DOI: 10.1016/j.jeurceramsoc.2021.03.031

Google Scholar

[55] M.K. Gora, A. Kumar, S. Kumar, J. Nehra, B.L. Choudhary, S.N. Dolia, R.K. Singhal, The Study of Optical, Structural and Magnetic Properties of Cu-Doped Zno Nanoparticles, Journal of Materials Science: Materials in Electronics. 34 (2023) 288.

DOI: 10.1007/s10854-022-09713-5

Google Scholar

[56] J. Marselie, V. Fauzia, I. Sugihartono, The Effect of Cu Dopant on Morphological, Structural and Optical Properties of Zno Nanorods Grown on Indium Tin Oxide Substrate, Journal of Physics: Conference Series, IOP Publishing, 2017, p.012014.

DOI: 10.1088/1742-6596/817/1/012014

Google Scholar

[57] M. Dhonde, K. Sahu, V. Murty, S.S. Nemala, P. Bhargava, Surface Plasmon Resonance Effect of Cu Nanoparticles in a Dye Sensitized Solar Cell, Electrochimica Acta. 249 (2017) 89-95.

DOI: 10.1016/j.electacta.2017.07.187

Google Scholar

[58] P.R. Jubu, O. Obaseki, A. Nathan-Abutu, F. Yam, Y. Yusof, M. Ochang, Dispensability of the Conventional Tauc's Plot for Accurate Bandgap Determination from Uv–Vis Optical Diffuse Reflectance Data, Results in Optics. 9 (2022) 100273.

DOI: 10.1016/j.rio.2022.100273

Google Scholar

[59] H. Guendouz, A. Bouaine, N. Brihi, Ultrawide Bandgap High near Ultraviolet Transparency Amorphous Sn–Al Co-Doped Zno Thin Films, Journal of Non-Crystalline Solids. 569 (2021) 121001.

DOI: 10.1016/j.jnoncrysol.2021.121001

Google Scholar

[60] A. Khalid, P. Ahmad, A. Khan, Effect of Cu Doping on Zno Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater (Retraction of Vol 2022, Art No 9459886, 2022), HINDAWI LTD ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND, 2023.

Google Scholar

[61] J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, Properties and Applications of Zno Nanomaterials with Oxygen Vacancies: A Review, Ceramics International. 44 (2018) 7357-7377.

DOI: 10.1016/j.ceramint.2018.02.013

Google Scholar

[62] N. Kochnev, D. Tkachenko, D. Kirsanov, N. Bobrysheva, M. Osmolowsky, M. Voznesenskiy, O. Osmolovskaya, Regulation and Prediction of Defect-Related Properties in Zno Nanosheets: Synthesis, Morphological and Structural Parameters, Dft Study and Qspr Modelling, Applied Surface Science. 621 (2023) 156828.

DOI: 10.1016/j.apsusc.2023.156828

Google Scholar

[63] V. Shanmugam, K.S. Jeyaperumal, Investigations of Visible Light Driven Sn and Cu Doped Zno Hybrid Nanoparticles for Photocatalytic Performance and Antibacterial Activity, Applied Surface Science. 449 (2018) 617-630.

DOI: 10.1016/j.apsusc.2017.11.167

Google Scholar

[64] Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Surface Oxygen Vacancy Defect-Promoted Electron-Hole Separation for Porous Defective Zno Hexagonal Plates and Enhanced Solar-Driven Photocatalytic Performance, Chemical Engineering Journal. 379 (2020) 122295.

DOI: 10.1016/j.cej.2019.122295

Google Scholar

[65] A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R.I. Faruque, I.U. Din, M.A. Alotaibi, A. Khan, Synergistic Effects of Cu-Doped Zno Nanoantibiotic against Gram-Positive Bacterial Strains, Plos one. 16 (2021) e0251082.

DOI: 10.1371/journal.pone.0251082

Google Scholar

[66] T.D. Tavares, J.C. Antunes, J. Padrão, A.I. Ribeiro, A. Zille, M.T.P. Amorim, F. Ferreira, H.P. Felgueiras, Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria, Antibiotics. 9 (2020) 314.

DOI: 10.3390/antibiotics9060314

Google Scholar

[67] W. Wei, J. Li, Z. Liu, Y. Deng, D. Chen, P. Gu, G. Wang, X. Fan, Distinct Antibacterial Activity of a Vertically Aligned Graphene Coating against Gram-Positive and Gram-Negative Bacteria, Journal of Materials Chemistry B. 8 (2020) 6069-6079.

DOI: 10.1039/d0tb00417k

Google Scholar

[68] C.A. Juan, J.M. Pérez de la Lastra, F.J. Plou, E. Pérez-Lebeña, The Chemistry of Reactive Oxygen Species (Ros) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies, International journal of molecular sciences. 22 (2021) 4642.

DOI: 10.3390/ijms22094642

Google Scholar

[69] X. Bai, Y. Cao, B. Zhu, R. Liu, J. Dong, H. Yang, Enhancement of Photocatalytic Antimicrobial Performance Via Generation and Diffusion of Ros, Science for Energy and Environment. (2024) 7-7.

DOI: 10.53941/see.2024.100007

Google Scholar

[70] M. Benamara, K.I. Nassar, M. Essid, S. Frick, R. Rugmini, K. Sekhar, J.P. Silva, Visible Light-Driven Removal of Rhodamine B Using Indium-Doped Zinc Oxide Prepared by Sol–Gel Method, Journal of Sol-Gel Science and Technology. 111 (2024) 553-565.

DOI: 10.1007/s10971-024-06471-0

Google Scholar

[71] T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam, R. Selvaraj, Photocatalytic Degradation of Rhodamine B by Zinc Oxide Nanoparticles Synthesized Using the Leaf Extract of Cyanometra Ramiflora, Journal of photochemistry and Photobiology B: Biology. 199 (2019) 111621.

DOI: 10.1016/j.jphotobiol.2019.111621

Google Scholar

[72] M. Rafique, R. Tahir, N. Khalid, M.B. Tahir, M. Irshad, S. Gillani, A. Usman, K. Shahzad, A. Mahmood Ali, S. Muhammad, Hydrothermal Synthesis of an Efficient and Visible Light Responsive Pure and Strontium Doped Zinc Oxide Nano-Hexagonal Photocatalysts for Photodegradation of Rhodamine B Dye, Applied Nanoscience. 11 (2021) 1045-1056.

DOI: 10.1007/s13204-021-01669-y

Google Scholar