The C Band Frequency Absorption Based on Super-Paramagnetic Zn0.8Ni0.2Fe2O4 Ferrite Nanoparticles

Article Preview

Abstract:

In this study, the absorption in the C band frequency range based on the super-paramagnetic Zn0.8Ni0.2Fe2O4 ferrite nanoparticles was synthesized simultaneously, with the PEG. The X-ray Diffraction (XRD) was used to determine the structure of ferrite, Transmission Electron Microscope (TEM) indicated the spherical morphology and the average size of particles was approximately 7-8 nm, respectively. Additionally, the Vibrating Samples Magnetometer (VSM) revealed that the magnetization saturation Ms of samples reached the highest value (28.47 emu/gr) with 0.15g/5ml PEG concentration. The high absorption of super-paramagnetic Zn0.8Ni0.2Fe2O4 ferrite nanoparticles (98% power attenuation) with composite (carbon black and 6g super-paramagnetic Zn0.8Ni0.2Fe2O4 ferrite) was investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Thakur, S. Taneja, D. Chahar, B. Ravelo, A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles, J. of Mag. and Mag. Mater. 530 (2021) 167925-44.

DOI: 10.1016/j.jmmm.2021.167925

Google Scholar

[2] P. Punia, R. Dhar, B. Ravelo, A. V. Trukhanov, L. V. Panina, P. Thakur & A. Thakur, Microstructural, Optical and Magnetic Study of Ni–Zn Nanoferrites, J. of Superconduc. and Novel Mag. 34 (2021) 2131-2140.

DOI: 10.1007/s10948-021-05967-y

Google Scholar

[3] O. Kaman, D. Kubániová, K. Knížek, L. Kubíčková, M. Klementová, J. Kohout, Z. Jirák, Structure and magnetic state of hydrothermally prepared Mn-Zn ferrite nanoparticles, J. of Alloys and Comp. 888 (2021) 16471-84.

DOI: 10.1016/j.jallcom.2021.161471

Google Scholar

[4] L. Liang, R. Yang, G. Han, Y. Feng*, B. Zhao*, R. Zhang, Y. Wang*, and C. Liu, Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites, ACS Appl. Mater. & Interf. 12 (2020) 2644-54.

DOI: 10.1016/j.carbon.2014.02.054

Google Scholar

[5] N. He, X. Yang, R. Ji, S. Fu, G. Tong, W. Wu, Polarization and matching modulation of peapod-like Cu/C nanowires to improve microwave absorption, J. of Alloys and Comp. 822 (2020) 1563633.

DOI: 10.1016/j.jallcom.2019.153633

Google Scholar

[6] M. Bala, V.D. Shivling, S. Tyagi, Enhancing X-band microwave absorption properties with nickel ferrite and carbon-based composites, Cera. Inter. 50 (2024) 34123-32.

DOI: 10.1016/j.ceramint.2024.06.231

Google Scholar

[7] M. Green and X. Chen, Recent progress of nanomaterials for microwave absorption, J. of Materiomics. 5 (2019) 503-541.

DOI: 10.1016/j.jmat.2019.07.003

Google Scholar

[8] M. F. Elmahaishi, R. a. S. Azis, I. Ismail, and F. D. Muhammad, A review on electromagnetic microwave absorption properties: their materials and performance, J. of Mater. Res. and Tech. 20 (2022) 2188-2220.

DOI: 10.1016/j.jmrt.2022.07.140

Google Scholar

[9] J. Rezania and H. Rahimi, Investigating the carbon materials' microwave absorption and its effects on the mechanical and physical properties of carbon fiber and carbon black/ polypropylene composites, J. of Comp. Mater. 51 (2016) 2263-2276.

DOI: 10.1177/0021998316669578

Google Scholar

[10] W. Przybył, R. Mazurczuk, A. Kalinowski and K. A. Bogdanowicz, Gaussian Model of Anti-Radar Properties for Coatings Based on Carbonyl Iron Powder, Materials 16 (2023) 3050-62.

DOI: 10.3390/ma16083050

Google Scholar

[11] V. S. Darekar and R. K. Goyal, Development of single-layered radar-absorbing material composed of graphene nanoplatelets-reinforced glass fabric/epoxy hybrid composites for X-band, J. of Mater. Sci.: Mater. in Electro. 35 (2024) 1167.

DOI: 10.1007/s10854-024-12928-3

Google Scholar

[12] M. A. Medina, G. Oza, A. Ángeles-Pascual, M. González, R. Antaño-López, A. Vera, L. Leija, E. Reguera, L. G. Arriaga, J. M. Hernández and J. T. Ramírez, Synthesis, Characterization and Magnetic Hyperthermia of Monodispersed Cobalt Ferrite Nanoparticles for Cancer Therapeutics, Molecules 25 (2020) 4428-42.

DOI: 10.3390/molecules25194428

Google Scholar

[13] N. Janudin, N. A. M. Kasim, V. F. Knight, M. N. F. Norrrahim, M. A. A. Razak, N. A. Halim, S. A. M. Noor, K. K. Ong, M. H. Yaacob, M. Z. Ahmad and W. M. W. Yunus, Fabrication of a Nickel Ferrite/Nanocellulose-Based Nanocomposite as an Active Sensing Material for the Detection of Chlorine Gas, Polymers 14 (2022) 1906-22.

DOI: 10.3390/polym14091906

Google Scholar

[14] D. Liu, J. Li, C. Wang, L. An, J. Lin, Q. Tian, S. Yang, Ultrasmall Fe@Fe3O4 nanoparticles as T1–T2 dual-mode MRI contrast agents for targeted tumor imaging, Nanomedicine: Nanotech., Bio. and Medic. 32 (2021) 1-11.

DOI: 10.1016/j.nano.2020.102335

Google Scholar

[15] A. Farzin, S. A. Etesami, J. Quint, A. Memic, A. Tamayol, Magnetic nanoparticles for cancer theranostics: Advances and prospects, J. of Contr. Relea. 335 (2021) 437-448.

Google Scholar

[16] N. G. Imam, M. AbouHasswa, G. Aquilanti, S. I. E. Dek, N. Okasha, A. A. G. A. Shahawy, Influence of polyethylene glycol on the physical properties of Co0.2Fe2.8O4 nanoparticles used as MRI contrast agent; synchrotron radiation Fe Kedge XAFS, J. Mater. Res. And Tech. 15 (2021) 4130-4146.

DOI: 10.1016/j.jmrt.2021.09.143

Google Scholar

[17] V. J. Sawant, S. R. Bamane, R. V. Shejwal, S. B. Patil, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells, J of Mag. and Mag. Mater. 417 (2016) 222-229.

DOI: 10.1016/j.jmmm.2016.05.061

Google Scholar

[18] K. Ajith, I.V. M. Enoch, A. B. Solomon, A. S. Pillai, Characterization of magnesium ferrite nanofluids for heat transfer applications, Mater. Today: Proceedings. 27 (2020) 107-110.

DOI: 10.1016/j.matpr.2019.09.014

Google Scholar

[19] D. Li, K. Guo, F. Wang, Z. Wu, B. Zhong, S. Zuo, J. Tang, J. Feng, R. Zhuo, D. Yan, P. Yan, Enhanced microwave absorption properties in C band of Ni/C porous nanofibers prepared by electrospinning, J. of Alloys and Compd. 800 (2019) 294-304.

DOI: 10.1016/j.jallcom.2019.05.284

Google Scholar

[20] P. Li, W. Zong, Z. Jin, Z. Yang, X. Qu and S. Li, Bandwidth Enhancement of a Mobile Phone Antenna Using Ferrite Slab, Magnetochemistry 8 (2022) 141-150.

DOI: 10.3390/magnetochemistry8110141

Google Scholar

[21] S. Cheraghali, G. Dini, I. Caligiuri, M. Back, and F. Rizzolio, PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent, Nanomaterials. 13 (2023) 452-471.

DOI: 10.3390/nano13030452

Google Scholar

[22] A. T. Q. Luong, V. D. Nguyen, A microwave‑absorbing property of super‑paramagnetic zinc–nickel ferrite nanoparticles in the frequency range of 8–12 GHz, Appl. Phys. A: Mater. Sci and Proc. 126 (2020) 67-73.

DOI: 10.1007/s00339-019-3251-z

Google Scholar

[23] B. D. Cullity, Elements of X-ray Diffraction, Pearson New International Edition, London, 1959.

Google Scholar

[24] M. Sari, Y. Yusuf, Synthesis and characterization of hydroxyapatite based on green mussel shells (pernaviridis) with the variation of stirring time using the precipitation method, IOP Conf. Ser. Mater. Sci. Eng. 432 (2018) 012046-54.

DOI: 10.1088/1757-899x/432/1/012046

Google Scholar

[25] H. Hao, Y. Wang, B. Shi, NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study, Water. Res. 155 (2019) 1-11.

DOI: 10.1016/j.watres.2019.01.049

Google Scholar

[26] D. B. Nugroho, A. Rianjanu, K. Triyana, A. Kusumaatmaja, R. Roto, Quartz crystal microbalance-coated cellulose acetate nanofibers overlaid with chitosan for detection of acetic anhydride vapor, Results Phys. 15 (2019) 102680.

DOI: 10.1016/j.rinp.2019.102680

Google Scholar

[27] A. T. Q. Luong and V. D. Nguyen, Hydrothermal synthesis of superparamagnetic zinc-nickel ferrite nanoparticles, Inter. J of Mater. Res. 109 (2018) 555-560.

DOI: 10.3139/146.111629

Google Scholar

[28] M. Benz, Superparamagnetism: Theory and applications. Unpublished Manuscript, Research Gate, 2012.

Google Scholar

[29] Y. Sani, R. S. Azis, I. Ismail, Y. Yaakob, J. Mohammed, Enhanced electromagnetic microwave absorbing performance of carbon nanostructures for RAMs: A review, J. Appl. Surf. Adv. 18 (2023) 100455-81.

DOI: 10.1016/j.apsadv.2023.100455

Google Scholar