Gold Microplates with Nano-through-Holes for Nano-Raman Analysis of Solid Surface

Article Preview

Abstract:

Raman spectroscopy is a powerful tool to analyze materials. The demand for analyzing materials in a smaller analytical region is increasing as technology advances. Tip-enhanced Raman spectroscopy (TERS) is an option. However, measuring the surface of three-dimensional bulk materials is quite challenging, since simultaneously excited micro-Raman signals hide the enhanced nano-Raman signals. In 2024, another approach of using a porous gold membrane was reported to dedicate solid surface analysis. However, this method, for example, sacrifices the lateral analytical spot size because nanopores distribute throughout the membrane. Here, 70-nm thick gold microplates with nano-through-holes in the center are fabricated. The gold microplates provide a smaller analytical spot because nano-through-holes are fabricated only in a spatially limited region. The microplates and the surrounding structures are clearly visible under optical microscopes. We moved gold microplates to another location on a silicon substrate using a manipulator and successfully demonstrated nano-Raman measurements of silicon surface via nano-through-holes. The finite-difference time-domain calculations confirmed that enhanced electric fields are available by the nano-through-holes and revealed that the nano-Raman signals come from the surface of silicon within a depth of 5.4 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Opt. Commun. 183 (2000) 333–336.

Google Scholar

[2] M.S. Anderson, Appl. Phys. Lett. 76 (2000) 3130–3132.

Google Scholar

[3] B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Electrochemistry 68 (2000) 942–949.

DOI: 10.5796/electrochemistry.68.942

Google Scholar

[4] J. Stadler, T. Schmid, R. Zenobi, ACS Nano 5 (2011) 8442–8448.

Google Scholar

[5] H. Itasaka, M. Nishi, M. Shimizu, Y. Okuno, S. Kashiwagi, N. Naka, K. Hirao, Nanoscale, J. Electrochem. Soc. 165 (2018) D711–D715.

DOI: 10.1149/2.0561814jes

Google Scholar

[6] D. Kurouski, Vibrat. Spectrosc. 91 (2017) 3–15.

Google Scholar

[7] Y. Yokota, M. Hong, N. Hayazawa, Y. Kim, Surf. Sci. Rep. 77 (2022) 100576.

Google Scholar

[8] R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang, J.G. Hou, Nature 498 (2013) 82–86.

DOI: 10.1038/nature12151

Google Scholar

[9] A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90 (2003) 095503.

Google Scholar

[10] A. Hartschuh, Angew. Chem. Int. Ed. 47 (2008) 8178–8191.

Google Scholar

[11] C. Blum, L. Opilik, J.M. Atkin, K. Braun, S.B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J.F. Li, K. Luszcz, T. Maleki, A.J. Meixner, S. Minne, M.B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.H. Zhong, R. Zenobi, J. Raman Spectrosc. 45 (2014) 22–31.

DOI: 10.1002/jrs.4423

Google Scholar

[12] Y. Cao, M. Sun, Rev. Phys. 8 (2022) 100067.

Google Scholar

[13] T.X. Huang, S.C. Huang, M.H. Li, Z.C. Zeng, X. Wang, B. Ren, Anal. Bioanal. Chem. 407 (2015) 8177–8195.

Google Scholar

[14] J. Wessel, J. Opt. Soc. Am. B 2 (1985) 1538–1551.

Google Scholar

[15] Z. Zhang, S. Sheng, R. Wang, M. Sun, Anal. Chem. 88 (2016) 9328–9346.

Google Scholar

[16] N. Lee, R.D. Hartschuh, D. Mehtani, A. Kisliuk, J.F. Maguire, M. Green, M.D. Foster, A.P. Sokolov, J. Raman Spectrosc. 38 (2007) 789–796.

DOI: 10.1002/jrs.1698

Google Scholar

[17] J.B. Hopkins, L.A. Farrow, J. Appl. Phys. 59 (1986) 1103–1110.

Google Scholar

[18] G. Kolb, T. Salbert, G. Abstreiter, J. Appl. Phys. 69 (1991) 3387–3389.

Google Scholar

[19] K. Mizoguchi, S. Nakashima, J. Appl. Phys. 65 (1989) 2583–2590.

Google Scholar

[20] R.M. Wyss, G. Kewes, P. Marabotti, S.M. Koepfli, K.P. Schlichting, M. Parzefall, E. Bonvin, M.F. Sarott, M. Trassin, M. Oezkent, C.H. Lu, K.P. Gradwohl, T. Perrault, L. Habibova, G. Marcelli, M. Giraldo, J. Vermant, L. Novotny, M. Frimmer, M.C. Weber, S. Heeg, Nat. Commun. 15 (2024).

DOI: 10.1038/s41467-024-49130-2

Google Scholar

[21] M. Nishi, T. Nakanishi, Y. Shimotsuma, K. Miura, K. Hirao, J. Ceram. Soc. Japan 946 (2007) 944–946.

DOI: 10.2109/jcersj2.115.944

Google Scholar

[22] P.A. Temple, C.E. Hathaway, Phys. Rev. B 7 (1973) 3685–3697.

Google Scholar

[23] Y. Suzaki and A. Tachibana, Appl. Opt. 14 (1975) 2809–2810.

Google Scholar

[24] F. Adar, E. Lee, S. Mamedov, A. Whitley, Microsc. Microanal. 16 (2010) 360–361.

Google Scholar

[25] N.J. Everall, Appl. Spectrosc. 54 (2000) 773–782.

Google Scholar

[26] G.S. Chua, C.J. Tay, C. Quan, Q. Lin, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 22 (2004) 801–808.

Google Scholar