[1]
B. Pretorius, H.C. Schönfeldt, Effect of different maize meal diets on growth and vitamin A: Case-study on chickens, Food Chem 140 (2013) 520–525. https://doi.org/10.1016/ J.FOODCHEM.2012.06.066.
DOI: 10.1016/j.foodchem.2012.06.066
Google Scholar
[2]
M. Ghali, M. Elnimr, G.F. Ali, B. Yousif, Colloidal CuInSe2 nanocrystals and thin films for low-cost photovoltaics, Opt Mater (Amst) 55 (2016) 145–152.
DOI: 10.1016/J.OPTMAT.2016.03.026
Google Scholar
[3]
B. Bhushan, Introduction to Nanotechnology, Springer Handbooks (2017) 1–19.
DOI: 10.1007/978-3-662-54357-3_1
Google Scholar
[4]
Y.M. Bakier, M. Ghali, W.K. Zahra, Highly sensitive fluorescent detection of pyridine using small size carbon quantum dots derived from folic acid, Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys 53 (2020) 10.
DOI: 10.1088/1361-6463/ab985e
Google Scholar
[5]
T. Boobalan, M. Sethupathi, N. Sengottuvelan, P. Kumar, P. Balaji, B. Gulyás, P. Padmanabhan, S.T. Selvan, A. Arun, Mushroom-Derived Carbon Dots for Toxic Metal Ion Detection and as Antibacterial and Anticancer Agents, ACS Appl Nano Mater 3 (2020) 5910–5919.
DOI: 10.1021/acsanm.0c01058
Google Scholar
[6]
M. Kurian, A. Paul, Recent trends in the use of green sources for carbon dot synthesis–A short review, Carbon Trends 3 (2021) 100032.
DOI: 10.1016/J.CARTRE.2021.100032
Google Scholar
[7]
B.T. Hoan, P.D. Tam, V.H. Pham, Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice, J Nanotechnol 2019 (2019).
DOI: 10.1155/2019/2852816
Google Scholar
[8]
M. Choppadandi, A.T. Guduru, P. Gondaliya, N. Arya, K. Kalia, H. Kumar, G. Kapusetti, Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging, Materials Science and Engineering: C 129 (2021) 112366.
DOI: 10.1016/J.MSEC.2021.112366
Google Scholar
[9]
B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv 3 (2013) 8286–8290.
DOI: 10.1039/C3RA00088E
Google Scholar
[10]
N. Sharma, I. Sharma, M.K. Bera, Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging, J Fluoresc 32 (2022) 1039–1049.
DOI: 10.1007/s10895-022-02923-4
Google Scholar
[11]
A. Rezaei, E. Hashemi, A pseudohomogeneous nanocarrier based on carbon quantum dots decorated with arginine as an efficient gene delivery vehicle, Sci Rep 11 (2021).
DOI: 10.1038/s41598-021-93153-4
Google Scholar
[12]
H.L. Yang, L.F. Bai, Z.R. Geng, H. Chen, L.T. Xu, Y.C. Xie, D.J. Wang, H.W. Gu, X.M. Wang, Carbon quantum dots: Preparation, optical properties, and biomedical applications, Mater Today Adv 18 (2023) 100376.
DOI: 10.1016/J.MTADV.2023.100376
Google Scholar
[13]
A. Dehghani, S.M. Ardekani, M. Hassan, V.G. Gomes, Collagen derived carbon quantum dots for cell imaging in 3D scaffolds via two-photon spectroscopy, Carbon N Y 131 (2018) 238–245.
DOI: 10.1016/j.carbon.2018.02.006
Google Scholar
[14]
G. Gao, M. Peng, L. Wondraczek, Spectral shifting and NIR down-conversion in Bi3+/Yb3+ co-doped Zn2GeO4, J Mater Chem C Mater 2 (2014) 8083–8088.
DOI: 10.1039/C4TC01242A
Google Scholar