[1]
J. Hou et al., "Facile synthesis of fluorescent carbon quantum dots from Betel leafs (Piper betle) for Fe3+sensingc," Anal. Methods, vol. 12, no. 33, p.4130–4138, 2020.
DOI: 10.1039/d0ay01241f
Google Scholar
[2]
R. Ramanarayanan and S. Swaminathan, "Synthesis and characterisation of green luminescent carbon dots from guava leaf extract," Mater. Today Proc., vol. 33, no. xxxx, p.2223–2227, 2019.
DOI: 10.1016/j.matpr.2020.03.805
Google Scholar
[3]
D. Ghosh, K. Sarkar, P. Devi, K. H. Kim, and P. Kumar, "Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices," Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p.110391, 2021.
DOI: 10.1016/j.rser.2020.110391
Google Scholar
[4]
Y. Zhu et al., "Membranes constructed with zero-dimension carbon quantum dots for CO2 separation," J. Memb. Sci., vol. 664, no. October, p.121086, 2022.
DOI: 10.1016/j.memsci.2022.121086
Google Scholar
[5]
X. Xu et al., "Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments," J. Am. Chem. Soc., vol. 126, no. 40, p.12736–12737, 2004.
DOI: 10.1021/ja040082h
Google Scholar
[6]
B. K. John, T. Abraham, and B. Mathew, "A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection," J. Fluoresc., vol. 32, no. 2, p.449–471, 2022.
DOI: 10.1007/s10895-021-02852-8
Google Scholar
[7]
M. Abd Elkodous et al., "Carbon dots: Discovery, structure, fluorescent properties, and applications," Nanotechnol. Rev., vol. 10, no. 1, p.1662–1739, 2021.
DOI: 10.1515/ntrev-2021-0099
Google Scholar
[8]
F. A. Permatasari, M. A. Irham, S. Z. Bisri, and F. Iskandar, "Carbon-based quantum dots for supercapacitors: Recent advances and future challenges," Nanomaterials, vol. 11, no. 1, p.1–34, 2021.
DOI: 10.3390/nano11010091
Google Scholar
[9]
P. Roy et al., "Plant leaf-derived graphene quantum dots and applications for white LEDs," New J. Chem., vol. 38, no. 10, p.4946–4951, 2014.
DOI: 10.1039/c4nj01185f
Google Scholar
[10]
D. N. Dirin, M. S. Sokolikova, A. M. Gaskov, and R. B. Vasilev, "Extinction and luminescence coefficients of CdSe/CdTe, CdTe/CdSe, and CdTe/CdS heterostructures based on colloidal CdSe and CdTe nanocrystals," J. Opt. Technol., vol. 78, no. 11, p.693, 2011.
DOI: 10.1364/jot.78.000693
Google Scholar
[11]
A. Gour and N. K. Jain, "Advances in green synthesis of nanoparticles," Artif. Cells, Nanomedicine Biotechnol., vol. 47, no. 1, p.844–851, 2019, doi: 10.1080/21691401. 2019.1577878.
DOI: 10.1080/21691401.2019.1577878
Google Scholar
[12]
S. Sahana, A. Gautam, R. Singh, and S. Chandel, "A recent update on development, synthesis methods, properties and application of natural products derived carbon dots," Nat. Products Bioprospect., vol. 13, no. 1, 2023.
DOI: 10.1007/s13659-023-00415-x
Google Scholar
[13]
R. Atchudan, T. N. Jebakumar Immanuel Edison, M. Shanmugam, S. Perumal, T. Somanathan, and Y. R. Lee, "Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging," Phys. E Low-Dimensional Syst. Nanostructures, vol. 126, no. July 2020, p.114417, 2021.
DOI: 10.1016/j.physe.2020.114417
Google Scholar
[14]
S. Y. Lim, W. Shen, and Z. Gao, "Carbon quantum dots and their applicationsElectrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments," Chem. Soc. Rev., vol. 44, no. 1, p.362–381, 2015.
DOI: 10.1039/c4cs00269e
Google Scholar
[15]
J. Dhariwal, G. K. Rao, and D. Vaya, "Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring," RSC Sustain., vol. 2, no. 1, p.11–36, 2023.
DOI: 10.1039/d3su00375b
Google Scholar
[16]
J. Xie, Z. Wu, J. Sun, C. Lv, and Q. Sun, "Green Synthesis of Carbon Quantum dots Derived from Lycium barbarum for Effective Fluorescence Detection of Cr (VI) Sensing," J. Fluoresc., vol. 34, no. 2, p.571–578, 2024.
DOI: 10.1007/s10895-023-03300-5
Google Scholar
[17]
J. Zhang et al., "Green synthesis of carbon dots from elm seeds via hydrothermal method for Fe3+ detection and cell imaging," Inorg. Chem. Commun., vol. 144, no. July, p.109837, 2022.
DOI: 10.1016/j.inoche.2022.109837
Google Scholar
[18]
P. de Jojoba, "NA review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant," Braz. J. Food Technol, no. June, p.198–204, 2007, [Online]. Available: http://www.researchgate.net/publication/257925395_Nutritional_Biochemical_and_Histopathological_Studies_on_Jojoba_Protein_Isolate/file/9c9605262e0744f6a7.pdf
Google Scholar
[19]
J. R. Al-Obaidi, M. F. Halabi, N. S. AlKhalifah, S. Asanar, A. A. Al-Soqeer, and M. F. Attia, "A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant," Biol. Res., vol. 50, no. 1, p.1–9, 2017.
DOI: 10.1186/s40659-017-0131-x
Google Scholar
[20]
H. A. Gad et al., "Jojoba oil: An updated comprehensive review on chemistry, pharmaceutical uses, and toxicity," Polymers (Basel)., vol. 13, no. 11, p.1–22, 2021.
DOI: 10.3390/polym13111711
Google Scholar
[21]
M. Aspects, Plant and Human Health, Volume 1, vol. 2. 2018.
DOI: 10.1007/978-3-319-93997-1
Google Scholar
[22]
W.M. Abdel-Mageed, S. A. L. H. Bayoumi, A. A. R. Salama, M. M. Salem-Bekhit, S. H. Abd-Alrahman, and H. M. Sayed, "Antioxidant lipoxygenase inhibitors from the leaf extracts of Simmondsia chinensis," Asian Pac. J. Trop. Med., vol. 7, no. S1, pp. S521–S526, 2014.
DOI: 10.1016/S1995-7645(14)60284-4
Google Scholar
[23]
Qurtulen, A. Ahmad, H. Salimi Shahraki, N. Khan, M. Ahmad, and R. Bushra, "One-pot synthesized fluorescent CDs from Syzygium cumini for metal ion sensing and cell imaging," Inorg. Chem. Commun., vol. 160, no. December 2023, p.111883, 2024.
DOI: 10.1016/j.inoche.2023.111883
Google Scholar
[24]
P. Anagbonu, A. Allam, and M. Ghali, "Low Temperature Synthesis of Fluorescent Carbon Dots from Pomegranate Peels," Key Eng. Mater., vol. 931, no. September, p.25–31, 2022.
DOI: 10.4028/p-14439u
Google Scholar