[1]
M. Kurian and A. Paul, "Recent trends in the use of green sources for carbon dot synthesis–A short review," Carbon Trends, vol. 3, (2021), 100032.
DOI: 10.1016/j.cartre.2021.100032
Google Scholar
[2]
H. S. AlSalem, M. S. Binkadem, S. T. Al-Goul, and M. A. Abdel-Lateef, "Synthesis of green emitted carbon dots from Vachellia nilotica and utilizing its extract as a red emitted fluorescence reagent: Applying for visual and spectroscopic detection of iron (III)," Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 295, (2023), 122616.
DOI: 10.1016/j.saa.2023.122616
Google Scholar
[3]
C. Xiong, J. Xu, Q. Han, C. Qin, L. Dai, and Y. Ni, "Construction of flexible cellulose nanofiber fiber@graphene quantum dots hybrid film applied in supercapacitor and sensor," Cellulose, vol. 28, (2021), 10359-10372.
DOI: 10.1007/s10570-021-04178-x
Google Scholar
[4]
Q. S. Kahdim, N. Abdelmoula, H. Al-Karagoly, S. Albukhaty, and J. Al-Saaidi, "Fabrication of a Polycaprolactone/Chitosan Nanofibrous Scaffold Loaded with Nigella sativa Extract for Biomedical Applications," BioTech, vol. 12, (2023), 1-14.
DOI: 10.3390/biotech12010019
Google Scholar
[5]
A. Singh et al., "Ultra-bright green carbon dots with excitation-independent fluorescence for bioimaging," J. Nanostructure Chem., vol. 13, (2023), 377-387.
DOI: 10.1007/s40097-022-00501-5
Google Scholar
[6]
J. Wu et al., "Carbon dot composites for bioapplications: A review," J. Mater. Chem. B, vol. 10, (2022), 843-869.
Google Scholar
[7]
W. Meng, X. Bai, B. Wang, Z. Liu, S. Lu, and B. Yang, "Biomass-Derived Carbon Dots and Their Applications," Energy Environ. Mater., vol. 2, (2019), 172-192.
DOI: 10.1002/eem2.12038
Google Scholar
[8]
S. Sultana, "Nutritional and functional properties of Moringa oleifera," Metab. Open, vol. 8, (2020), 100067.
Google Scholar
[9]
B. Moyo, P. J. Masika, A. Hugo, and V. Muchenje, "Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves," African J. Biotechnol., vol. 10, (2011), 12925-12933.
DOI: 10.5897/ajb10.1599
Google Scholar
[10]
Z. Wang et al., "The green synthesis of carbon quantum dots and applications for sulcotrione detection and anti-pathogen activities," J. Saudi Chem. Soc., vol. 25, (2021), 101373.
DOI: 10.1016/j.jscs.2021.101373
Google Scholar
[11]
M. Muthukumaran, G. Dhinagaran, V. Narayanan, T. Raju, and K. Venkatachalam, "A green synthesis, characterization of highly luminescent carbon dots from Moringa oleifera gum application as an efficient potentiometric sensor for Hg2+ toxic metal ions," J. Indian Chem. Soc., vol. 96, (2019), 78-80.
DOI: 10.29055/jccs/604
Google Scholar
[12]
L. Zhao, Y. Wang, X. Zhao, Y. Deng, and Y. Xia, "Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+," Polymers (Basel)., vol. 11, (2019), 1-12.
DOI: 10.3390/polym11111731
Google Scholar
[13]
A. F. Shaikh, M. S. Tamboli, R. H. Patil, A. Bhan, J. D. Ambekar, and B. B. Kale, "Bioinspired Carbon Quantum Dots: An Antibiofilm Agents," J. Nanosci. Nanotechnol., vol. 19, (2018), 2339-2345.
DOI: 10.1166/jnn.2019.16537
Google Scholar
[14]
M. Saikia, T. Das, B. K. Saikia, "A Novel Rapid Synthesis of Highly Stable Silver Nanoparticle/Carbon Quantum Dot Nanocomposites Derived from Low-Grade Coal Feedstock." New Journal of Chemistry, vol. 46, (2022), 309–321.
DOI: 10.1039/d1nj04039a
Google Scholar
[15]
P. Anagbonu, A. Allam, and M. Ghali, "Low Temperature Synthesis of Fluorescent Carbon Dots from Pomegranate Low Temperature Synthesis of Fluorescent Carbon Dots from Pomegranate Peels," in Key Engineering Materials, vol. 931, (2022), 25-31.
DOI: 10.4028/p-14439u
Google Scholar
[16]
P. Anagbonu, M. Ghali, and A. Allam, "Low ‑ temperature green synthesis of few ‑ layered graphene sheets from pomegranate peels for supercapacitor applications," Sci. Rep., (2023), 1-12.
DOI: 10.1038/s41598-023-42029-w
Google Scholar