Novel Multi-Spacer Hk/Mg 28 nm Planar MOSFET for Superior Subthreshold Swing and DIBL Optimization: Simulation Design and Process Investigation

Article Preview

Abstract:

This study optimizes 28 nm planar MOSFET technology to reduce device leakage current and enhance switching speed. The specific aims are to decrease subthreshold swing (S.S.) and mitigate drain-induced barrier lowering (DIBL) effect. Silvaco TCAD software is used for process (Athena) and device (Atlas) simulations. For the further development of MOSFET technology, we implemented our device (planar 28 nm n-MOSFET) with high-k metal-gate (HK/MG), lightly doped drain (LDD), multi-spacers, and silicide. Simulation validation shows improvements over other 28 nm devices, with lower static power consumption and notable optimizations in both S.S. (69.8 mV/dec) and DIBL effect (30.5 mV/V).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-60

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.-D. Lee, C.-W. Lian, S.-J. Wang, Y.-H. Yu, O. Cheng, L.S. Huang, and M.-C. Wang, "Electrical quality of 28 nm HK/MG MOSFETs with PDA and DPN treatment" in 2014 International Symposium on Next-Generation Electronics (ISNE), 2014, p.1–4.

DOI: 10.1109/isne.2014.6839328

Google Scholar

[2] D.-C. Zhang, C.-C. Chou, H.-H. Chen, S.-Z. Chen, J.-M. Chen, H.-Y. Bor, W.-H. Lan, and M.-C. Wang, "Fringe gate leakage of 28 nm HK/MG nMOSFETs with nitridation treatments," in 2020 3rd IEEE International Conference on Knowledge Innovation and Invention(ICKII), 2020, p.1–3.

DOI: 10.1109/ickii50300.2020.9318939

Google Scholar

[3] S. M. Sze, Y. Li, and K. K. Ng, *Physics of Semiconductor Devices*. Hoboken, NJ: John Wiley & Sons, Inc., 2021.

Google Scholar

[4] E. Vandamme, P. Jansen, and L. Deferm, "Modeling the subthreshold swing in MOSFETs," IEEE Electron Device Letters, vol. 18, no. 8, p.369–371, 1997.

DOI: 10.1109/55.605442

Google Scholar

[5] C. Hu, *Modern Semiconductor Devices for Integrated Circuits*. Upper Saddle River, N.J: Prentice Hall, 2010.

Google Scholar

[6] H.-S. Kim, S.-W. Han, W.-H. Jang, C.-H. Cho, K.-S. Seo, J. Oh, and H.-Y. Cha, "Normally-off GaN-on-Si MISFET using PECVD Sion gate dielectric," IEEE Electron Device Letters, vol. 38, no. 8, p.1090–1093, 2017.

DOI: 10.1109/led.2017.2720719

Google Scholar

[7] Y. Wei, J. Yao, Q. Zhang, G. Sang, Y. Bao, J. Gao, J. Li, J. Luo, and H. Yin, "Sub-5-Å La2O3 in situ dipole technique for large VFB modulation with EOT reduction and improved interface for HKMG technology," IEEE Transactions on Electron Devices, vol. 71, no. 1, p.746–751, 2024.

DOI: 10.1109/ted.2023.3335900

Google Scholar

[8] R. Singanamalla, H. Yu, G. Pourtois, I. Ferain, K. Anil, S. Kubicek, T. Hoffmann, M. Jurczak, S. Biesemans, and K. De Meyer, "On the impact of TiN film thickness variations on the effective work function of poly-Si/TiN/SiO2 and poly-Si/TiN/HfSiON gate stacks," IEEE Electron Device Letters, vol. 27, no. 5, p.332–334, 2006.

DOI: 10.1109/led.2006.872916

Google Scholar

[9] T. Watanabe, A. Menjoh, T. Mochizuki, S. Shinozaki, and O. Ozawa, "A 100Å thick stacked SiO2/Si3N4/SiO2 dielectric layer for memory capacitor," in 23rd International Reliability Physics Symposium, 1985, p.18–23.

DOI: 10.1109/irps.1985.362069

Google Scholar

[10] N. Breil, A. Carr, T. Kuratomi, C. Lavoie, I.-C. Chen, M. Stolfi, K. D. Chiu, W. Wang, H. Van Meer, S. Sharma, R. Hung, A. Gelatos, J. Jordan-Sweet, E. Levrau, N. Loubet, R. Chao, J. Ye, A. Ozcan, C. Surisetty, and M. Chudzik, "Highly-selective superconformal CVD Ti silicide process enabling area-enhanced contacts for next-generation CMOS architectures," in 2017 Symposium on VLSI Technology, 2017, pp. T216–T217.

DOI: 10.23919/vlsit.2017.7998177

Google Scholar

[11] B. Doris, D. Park, K. Settlemyer, P. Jamison, D. Boyd, Y. Li, J. Hagan, T. Staendert, J. Mezzapelli, D. Dobuzinsky, B. Linder, V. Narayanan, S. Callegari, E. Gousev, K. Guarini, R. Jammy, and M. Leong, "Ultra-thin SOI replacement gate CMOS with ALD TaN/high-k gate stack," in IEEE VLSI-TSA International Symposium on VLSI Technology, 2005 (VLSI-TSA-Tech), 2005, p.101–102.

DOI: 10.1109/vtsa.2005.1497095

Google Scholar

[12] M.-C. Wang, C.-K. Du, M.-R. Peng, S.-J. Wang, S.-Y. Chen, C.-H. Liu, O. Cheng, L. S. Huang, and S. C. Lee, "Trend of subthreshold swing with DPN process for 28 nm N/PMOSFETs," in 2013 International Symposium on Next-Generation Electronics, 2013, p.389–392.

DOI: 10.1109/isne.2013.6512375

Google Scholar

[13] S.-E. Huang, W.-X. You, and P. Su, "Mitigating DIBL and short-channel effects for III-V FinFETs with negative-capacitance effects," IEEE Journal of the Electron Devices Society, vol. 10, p.65–71, 2022.

DOI: 10.1109/jeds.2021.3133453

Google Scholar

[14] A. Kumar, M. Pattanaik, P. Srivastava, and K. K. Jha, "Dual metal hetero-dielectric GAAFET based energy-efficient digital circuits," in 2020 International Conference on Smart Electronics and Communication (ICOSEC), 2020, p.1206–1209.

DOI: 10.1109/icosec49089.2020.9215330

Google Scholar

[15] M. Godara, C. Madhu and G. Joshi, "Comparison of Electrical Characteristics of 28 Nm Bulk MOSFET and FDSOI MOSFET," 2018 IEEE Electron Devices Kolkata Conference (EDKCON), Kolkata, India, 2018, pp.413-418.

DOI: 10.1109/EDKCON.2018.8770413

Google Scholar