[1]
The Role of Enhanced Oil Recovery EOR in Modern Exploration, (n.d.). https://www.petrosync.com/blog/what-is-enhanced-oil-recovery-eor/ (accessed August 11, 2024).
DOI: 10.2172/7270418
Google Scholar
[2]
Enhanced Oil Recovery | Department of Energy, (n.d.). https://www.energy.gov/fecm/ enhanced-oil-recovery (accessed August 11, 2024).
Google Scholar
[3]
Q. Tong, Z. Fan, Q. Liu, S. Qiao, L. Cai, Y. Fu, X. Zhang, A. Sun, Research Progress in Nanofluid-Enhanced Oil Recovery Technology and Mechanism, Molecules 28 (2023).
DOI: 10.3390/molecules28227478
Google Scholar
[4]
M. Mohammadi, M. Sedighi, A. Hemmati-Sarapardeh, Application of Nanofluids in Enhanced Oil Recovery: A Systematic Literature Review and Organizing Framework, in: Nanofluids and Their Engineering Applications, 2019.
DOI: 10.1201/9780429468223-20
Google Scholar
[5]
L.P. Tuok, M. Elkady, A. Zkria, T. Yoshitake, U. Nour Eldemerdash, Evaluation of stability and functionality of zinc oxide nanofluids for enhanced oil recovery, Micro and Nano Systems Letters 11 (2023).
DOI: 10.1186/s40486-023-00180-z
Google Scholar
[6]
L.P. Tuok, M. Elkady, A. Zkria, T. Yoshitake, S.A. Abdelkader, D.F. Seyam, A.A. El-Moneim, A.M.R.F. El-Bab, U.N. Eldemerdash, Experimental investigation of copper oxide nanofluids for enhanced oil recovery in the presence of cationic surfactant using a microfluidic model, Chemical Engineering Journal 488 (2024).
DOI: 10.1016/j.cej.2024.151011
Google Scholar
[7]
A. Khajeh Kulaki, S.M. Hosseini-Nasab, F. Hormozi, Low-salinity water flooding by a novel hybrid of nano γ-Al2O3/SiO2 modified with a green surfactant for enhanced oil recovery, Sci Rep 14 (2024).
DOI: 10.1038/s41598-024-64171-9
Google Scholar
[8]
S. Rostami, M. Ahmadlouydarab, A. Sharifi Haddad, Effects of hot nanofluid injection on oil recovery from a model porous medium, Chemical Engineering Research and Design 186 (2022).
DOI: 10.1016/j.cherd.2022.08.013
Google Scholar
[9]
D.K. Tatar, J.M. Jha, Wet chemical synthesis and characterization of CuO nanoparticles and their application in pool boiling heat transfer, J Cryst Growth 617 (2023).
DOI: 10.1016/j.jcrysgro.2023.127305
Google Scholar
[10]
P. Bharathi, S. Karthigeyan, M. Krishna Mohan, Synthesis and functional properties of ZnO/CuO nanocomposite for gas sensing applications, IOP Conf Ser Mater Sci Eng 1219 (2022) 012053.
DOI: 10.1088/1757-899x/1219/1/012053
Google Scholar
[11]
O.Z. Sharaf, N. Rizk, C.J. Munro, C.P. Joshi, W. Waheed, E. Abu-Nada, A. Alazzam, M.N. Martin, Thermal stability and plasmonic photothermal conversion of surface-modified solar nanofluids: Comparing prolonged and cyclic thermal treatments, Energy Convers Manag 244 (2021).
DOI: 10.1016/j.enconman.2021.114463
Google Scholar
[12]
A.R.I. Ali, B. Salam, A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application, SN Appl Sci 2 (2020).
DOI: 10.1007/s42452-020-03427-1
Google Scholar
[13]
R. Khoramian, R. Kharrat, S. Golshokooh, The development of novel nanofluid for enhanced oil recovery application, Fuel 311 (2022).
DOI: 10.1016/j.fuel.2021.122558
Google Scholar
[14]
W. Kuang, S. Saraji, M. Piri, A systematic experimental investigation on the synergistic effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery, Fuel 220 (2018).
DOI: 10.1016/j.fuel.2018.01.102
Google Scholar