[1]
Sasaki, O., Goto, M., Hirose, Y.: Role of residual stress in fatigue. JSME International Journal Series A, Solid Mechanics and Material Engineering 43 (2000) 1-8.
Google Scholar
[2]
Jahed, H., Larsen, H.J.: Residual stress effects in fatigue of metals. International Journal of Fatigue 28 (2006) 773-842.
Google Scholar
[3]
Lee, B., Jung, H.Y.: Factors Affecting on Mechanical Properties of Soft Martensitic Stainless Steel Castings. JSME International Journal Series A, Solid Mechanics and Material Engineering 46(3) (2003) 441-447.
DOI: 10.1299/jsmea.46.441
Google Scholar
[4]
Zolotorevsky, V.S., Bokshteyn, S.Z., Kazakov, A.A., et al.: Residual stresses and their influence on the structural integrity of materials. Journal of Materials Science 35 (2000) 6259-6269.
Google Scholar
[5]
Basquin, O.H.: The Exponential Law of Endurance Tests. Proceedings of the American Society for Testing Materials 10 (1910) 625-630.
Google Scholar
[6]
Manson, S.S.: Fatigue: A Complex Subject—Some Simple Approximations. Experimental Mechanics 5(7) (1965) 193-226.
Google Scholar
[7]
McClung, R.C., FitzGerald, B.P., Milligan, P.H., et al.: The Role of Residual Stress in Fatigue Crack Growth. Fatigue & Fracture of Engineering Materials & Structures 21(9) (1998) 1007-1017.
Google Scholar
[8]
Nickels, R.L., Hill, M.R.: The effect of residual stress on fatigue crack growth under variable amplitude loading. International Journal of Fatigue 29(10) (2007) 1867-1875.
Google Scholar
[9]
Prevéy, P.S.: X-ray diffraction residual stress measurement. In: Handbook of Measurement of Residual Stresses. Society for Experimental Mechanics (1992) 13-33.
Google Scholar
[10]
Newton, M., Hill, A.: Residual Stress Measurement: An Overview. In: Handbook of Residual Stress and Fatigue. ASM International (2000) 1-12.
Google Scholar
[11]
Paris, P.C., Erdogan, F.: A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering 85(4) (1963) 528-534.
DOI: 10.1115/1.3656900
Google Scholar
[12]
Miller, K.J.: The short crack problem. Fatigue & Fracture of Engineering Materials & Structures 10(2) (1987) 93-113.
Google Scholar
[13]
Basan, S., Komazec, M.: Cumulative Fatigue Damage Mechanisms and Quantifying Parameters: A Literature Review. Metals 7(10) (2017) 394.
Google Scholar
[14]
Forsyth, P.J.E.: A Unified Description of Fatigue Crack Initiation and Propagation. International Journal of Fatigue 2(1) (1980) 1-7.
Google Scholar
[15]
Landgraf, R.W.: The Resistance of Metals to Cyclic Deformation. In: Achievement of High Fatigue Resistance in Metals and Alloys. ASTM International (1970) 213-228.
DOI: 10.1520/stp26837s
Google Scholar
[16]
McClung, R.C.: Finite element modeling of fatigue crack growth in the presence of residual stresses. Engineering Fracture Mechanics 74(1) (2007) 149-163.
Google Scholar
[17]
Al-Assaf, Y., Al-Fadhalah, M.: Effect of residual stresses on fatigue life: A review. Fatigue & Fracture of Engineering Materials & Structures 35(10) (2012) 905-920.
Google Scholar
[18]
Webster, G.A.: Residual stress relaxation. In: Residual Stress in Design, Process and Materials Selection. ASM International (1992) 13-20.
Google Scholar
[19]
Smith, M.T.: Residual stress effects on fatigue crack initiation and propagation. International Journal of Fatigue 22(5) (2000) 393-402.
Google Scholar
[20]
Sines, G.: Behavior of metals under complex static and cyclic stresses. Metals Engineering Quarterly 1(1) (1961) 12-25.
Google Scholar
[21]
Dang Van, K., Galtier, A., Le Douaron, A., et al.: A new multiaxial fatigue criterion: theory and application. In: Multiaxial Fatigue. ASTM International (1994) 58-71.
Google Scholar
[22]
Nurul Islam, M., Haider, J., Sun, S., et al.: Numerical and experimental analysis of residual stress evolution in laser-welded high-strength low-alloy steel. Materials & Design 204 (2021) 109679.
Google Scholar
[23]
Webster, G.A.: The measurement of residual stress. Materials Science and Technology 17(4) (2001) 401-409.
Google Scholar
[24]
Wang, J., Feng, Z., He, X., et al.: Evolution of residual stresses and their effects on fatigue crack initiation in welded high-strength steel. Materials Science and Engineering: A 693 (2017) 22-31.
Google Scholar
[25]
Pommier, S., Alexis, J.: Numerical analysis of fatigue crack propagation under residual stress fields. Engineering Fracture Mechanics 75(17) (2008) 3217-3228.
Google Scholar
[26]
Tanaka, K.: Cumulative damage theory based on the crack propagation law. Materials Science and Engineering 63(2) (1984) 163-172.
Google Scholar
[27]
Dowling, N.E.: Fatigue Life Prediction. In: Metals Handbook, Vol. 19, Fatigue and Fracture. ASM International (1996) 247-258.
Google Scholar
[28]
McDowell, D.L.: Cyclic plasticity and residual stress effects in fatigue. International Journal of Fatigue 15(1) (1993) 1-13.
Google Scholar
[29]
Scheider, L., Brocks, W.: Cohesive zone models and the process region ahead of a crack. International Journal of Fracture 141(1) (2006) 243-268.
Google Scholar
[30]
Lu, J., Flavenot, J.F.: Residual stresses in surface-treated materials. Engineering Materials Science and Technology, ASME 116(2) (1994) 345-350.
Google Scholar
[31]
Gomes, C.C., da Silva, J.H.C., Costa, M.C.B.: Characterization of ASTM A743 CA6NM Alloy Steel Used in Hydrogenator Components. Proceedings of the 21st International Congress of Mechanical Engineering (2011).
Google Scholar