[1]
S. A. Namjoshi, S. Mall, V. K. Jain, and O. Jin, "Fretting fatigue crack initiation mechanism in Ti-6Al-4V," Fatigue Fract Eng Mater Struct, vol. 25, no. 10, p.955–964, Oct. 2002.
DOI: 10.1046/j.1460-2695.2002.00549.x
Google Scholar
[2]
M. S. D. Jacob, P. R. Arora, M. Saleem, E. M. Ahmed, and S. M. Sapuan, "Fretting fatigue crack initiation: An experimental and theoretical study," Int J Fatigue, vol. 29, no. 7, p.1328–1338, Jul. 2007.
DOI: 10.1016/j.ijfatigue.2006.10.006
Google Scholar
[3]
C. D. Lykins, S. Mall, and V. K. Jain, "Combined experimental-numerical investigation of fretting fatigue crack initiation," 2001. [Online]. Available: www.elsevier.com/locate/ijfatigue
DOI: 10.1016/s0142-1123(01)00029-9
Google Scholar
[4]
Y. Mutoh, "Mechanisms of Fretting Fatigue," JSME International Journal, vol. 38, no. 4, 1995.
Google Scholar
[5]
B. Alfredsson and A. Cadario, "A study on fretting friction evolution and fretting fatigue crack initiation for a spherical contact," Int J Fatigue, vol. 26, no. 10, p.1037–1052, Oct. 2004.
DOI: 10.1016/j.ijfatigue.2004.03.010
Google Scholar
[6]
Y. Dong et al., "Study on fretting fatigue crack initiation of scaled railway axles in consideration of fretting wear," Wear, vol. 512–513, Jan. 2023.
DOI: 10.1016/j.wear.2022.204545
Google Scholar
[7]
D. B. Garcia and A. F. Grandt, "Fractographic investigation of fretting fatigue cracks in Ti-6Al-4V," Eng Fail Anal, vol. 12, no. 4, p.537–548, Aug. 2005.
DOI: 10.1016/j.engfailanal.2004.10.006
Google Scholar
[8]
A. Hutson, T. Nicholas, and R. John, "Fretting fatigue crack analysis in Ti-6Al-4V," in International Journal of Fatigue, Oct. 2005, p.1582–1589.
DOI: 10.1016/j.ijfatigue.2005.07.008
Google Scholar
[9]
M. Nesládek et al., "Fretting fatigue of 42CrMo4+QT steel: Experimental and numerical assessment," Int J Fatigue, vol. 189, p.108575, Dec. 2024.
DOI: 10.1016/j.ijfatigue.2024.108575
Google Scholar
[10]
J. Kohout and S. Věchet, "A new function for fatigue curves characterization and its multiple merits," Int J Fatigue, vol. 23, no. 2, p.175–183, 2001.
DOI: 10.1016/S0142-1123(00)00082-7
Google Scholar
[11]
S. A. Böhme and J. Papuga, "Advancements in stress‐based multiaxial fatigue prediction: A data‐driven approach and a new criterion," Fatigue Fract Eng Mater Struct, Apr. 2024.
DOI: 10.1111/ffe.14281
Google Scholar
[12]
D. Knabner, S. Vetter, L. Suchý, and A. Hasse, "Comparative Study of Crack Initiation Criteria for Flat–Flat Contacts Subjected to Fretting Fatigue of Drive-Train Components," 2022, p.195–216.
DOI: 10.1007/978-981-16-8810-2_15
Google Scholar
[13]
Dang Van K., Griveau B., and Message O., "On a new multiaxial fatigue limit criterion: theory and application," in Biaxial and Multiaxial Fatigue EGF 3, M. W. Brown and K. J. Miller, Eds., London: Mech Eng Publications, 1989, p.479–496.
Google Scholar
[14]
M. Nesládek and M. Španiel, "An Abaqus plugin for fatigue predictions," Advances in Engineering Software, vol. 103, p.1–11, Jan. 2017.
DOI: 10.1016/j.advengsoft.2016.10.008
Google Scholar
[15]
M. Nesládek, F. Fojtík, M. Mžourek, and J. Papuga, "Notched structural steel specimens assessed by selected fatigue analysis methods," J Constr Steel Res, vol. 219, p.108789, Aug. 2024.
DOI: 10.1016/j.jcsr.2024.108789
Google Scholar
[16]
L. Susmel, Multiaxial notch fatigue: From nominal to local stress/strain quantities. Cambridge: Woodhead Publishing, 2009.
Google Scholar
[17]
E. Giner, M. Sabsabi, J. J. Ródenas, and F. Javier Fuenmayor, "Direction of crack propagation in a complete contact fretting-fatigue problem," Int J Fatigue, vol. 58, p.172–180, Jan. 2014.
DOI: 10.1016/j.ijfatigue.2013.03.001
Google Scholar
[18]
Y. Xiangqiao, D. Shanyi, and Z. Zehua, "Mixed-mode fatigue crack growth prediction in biaxially stretched sheets," Eng Fract Mech, vol. 43, no. 3, p.471–475, Oct. 1992.
DOI: 10.1016/0013-7944(92)90115-U
Google Scholar
[19]
C. Berger, J. G. Blauel, L. Hodulak, B. Pyttel, and I. Varfolomeev, Fracture Mechanics Proof of Strength for Engineering Components, 4th ed. Frankfurt am Main: VDMA-Verlag, 2018.
Google Scholar
[20]
D. Knabner, S. Hauschild, L. Suchý, S. Vetter, E. Leidich, and A. Hasse, "Calculation method for the fail-safe design of steel-steel contacts subject to fretting fatigue based on a worst-case assumption," Int J Fatigue, vol. 165, Dec. 2022.
DOI: 10.1016/j.ijfatigue.2022.107217
Google Scholar