Anisotropic Behavior on Fatigue Properties of API 5L X42 Pipeline Steel

Article Preview

Abstract:

The fatigue endurance of API 5L X42 pipeline steel was assessed through axial fatigue tests amongst Longitudinal (L), Diagonal (D) and Circumferential (C) directions. The S-N fatigue life curves were linearized by the stress-life relationship provided in the ASTM E-739 Std., and fatigue strength exponent was calculated by the linear regression method. Results showed an anisotropic behavior of fatigue properties, which is mainly controlled by the pearlite banding degree (Ai) and the ferritic grain orientation parameter (Ω12). The interactions of the fatigue crack tip with the microstructure during the crack propagation stage have a significant effect on fatigue endurance. The C direction with the lowest values of banding degree (Ai) and grain orientation parameter (Ω12) showed the strongest fatigue endurance behavior. Furthermore, fatigue strength exponents exhibited significant directional dependence, representing a reduction of up to 20% in fatigue lifetime depending on the evaluated direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-44

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Singh, D. Shukla, R. Kumar, K. Arora. The structural integrity of high-strength welded pipeline steels: a review. International Journal of Structural Integrity, 12-3 (2021), 470-496.

DOI: 10.1108/IJSI-05-2020-0051

Google Scholar

[2] S. Sharma, S. Maheshwari. A review on welding of high strength oil and gas pipeline steels J. Nat. Gas Sci. Eng. 38 (2017), 203-217.

DOI: 10.1016/j.jngse.2016.12.039

Google Scholar

[3] Y. Yang, L. Shi, Z. Xu, H. Lu, X. Chen, X. Wang. Fracture toughness of the materials in welded joint of X80 pipeline steel. Eng. Fract. Mech. 148 (2015) 337-349.

DOI: 10.1016/j.engfracmech.2015.07.061

Google Scholar

[4] S. Vishnuvardhan, A. Ramachandra Murthy, Abhishek Choudhary. A review on pipeline failures, defects in pipelines and their assessment and fatigue life prediction methods. Int. J. Press. Vessels Pip. 201 (2023) 104853.

DOI: 10.1016/j.ijpvp.2022.104853

Google Scholar

[5] Muhammad Wasim and Milos B. Djukic. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive prevention. J. Nat. Gas Sci. Eng. 100 (2022) 104467.

DOI: 10.1016/j.jngse.2022.104467

Google Scholar

[6] Hafiez M.B. Khalid, Khlad F.G. Awath, Ali F. Ali Fadiel. Evaluation of cathodic protection system for pipelines at Brega Petroleum marketing company in Libya. Advanced Engineering Letters. 3 (2024) 30-35.

DOI: 10.46793/adeletters.2024.3.1.4

Google Scholar

[7] M.A. Mohtadi-Bonab. Effect of different parameters on hydrogen affected fatigue failure in pipeline steels. Eng. Fail. Anal. 137 (2022) 106262. https://doi.org/10.1016/j.engfailanal. 2022.106262.

DOI: 10.1016/j.engfailanal.2022.106262

Google Scholar

[8] S Hai-Jun, G Wan-Lin, M Jun-Feng, Z Bao-Tian. Relations between the S–N, ɛ–N and da/dN-∆ K curves of materials. Open Mech. Eng. J. 3 (2009) 35-42.

DOI: 10.2174/1874155X00903010035

Google Scholar

[9] ASME B31.8, Gas transmission and distribution piping systems, the American Society of Mechanical Engineers, New York, ISBN: 9780791876794, (2022) 1-226.

Google Scholar

[10] ASME B31.4, Pipeline transportation systems for liquids and slurries, the American Society of Mechanical Engineers, New York, ISBN: 9780791875377, (2019) 1-132.

Google Scholar

[11] DNV-ST-F101, Offshore Standard, Submarine Pipeline Systems, Det Norske Veritas, Norway, (20221) 1-512.

DOI: 10.3940/rina.mre.2010.01

Google Scholar

[12] DNVGL-OS-C101, Offshore Standard, Design of offshore steel structures, general-LRFD method, Det Norske Veritas, Norway, 2015.

Google Scholar

[13] Zong C, Zhu G, Mao W. Effect of crystallographic texture on the anisotropy of Charpy impact behaviour in pipeline steel. Mater Sci Eng A, 563 (2013) 1‐7.

DOI: 10.1016/j.msea.2012.11.055

Google Scholar

[14] Joo MS, Suh D‐W, Bae JH, JBhadeshia H. Role of delamination and crystallography on anisotropy of Charpy toughness in API X80 steel. Mater Sci Eng A, 546 (2012) 314‐322.

DOI: 10.1016/j.msea.2012.03.079

Google Scholar

[15] Ghosh A, Modak P, Dutta R, Chakrabarti D. Effect of MnS inclusion and crystallographic texture on anisotropy in Charpy impact toughness of low carbon ferritic steel. Mater Sci Eng A, 654 (2016) 298‐308.

DOI: 10.1016/j.msea.2015.12.047

Google Scholar

[16] Joo MS, Suh D‐W, Bae JH, Mouriño SN. Experiments to separate the effect of texture on anisotropy of pipeline steel. Mater Sci Eng A, 556 (2012) 601‐606.

DOI: 10.1016/j.msea.2012.07.033

Google Scholar

[17] Brozzo P, Buzzichelli G. Effect of plastic anisotropy on the occurrence of separations on fracture surfaces of hot rolled steel specimens. Scripta Metallurgica, 10(3) (1976) 235‐240.

DOI: 10.1016/0036-9748(76)90369-0

Google Scholar

[18] Joo MS, Suh D, Bae J. Toughness anisotropy in X70 and X80 line‐pipe steels. Mater Sci Technol, 30 (2014) 439‐446.

DOI: 10.1179/1743284713y.0000000371

Google Scholar

[19] Fegredo D, Faucher B, Shehata M. Influence of Inclusion Content, Texture and Microstructure on the Toughness Anisotropy of Low Carbon Steels. Oxford, U. K.: Strength of Metals and Alloys: Pergamon Press. 2 (1985) 1127-1132.

Google Scholar

[20] M.A. Beltran‐Zúñiga, J.L. González‐Velázquez, D.I. Rivas‐López, H.J. Dorantes‐Rosales, F. Hernández‐Santiago, Effect of microstructure and crystallographic texture on the toughness anisotropy of API 5L X46 steel, Fatigue Fract Eng Mater Struct., 41 (2018) 749–761.

DOI: 10.1111/ffe.12782

Google Scholar

[21] Ju J‐B, Jung‐Suk L, Jae‐il J. Fracture toughness anisotropy in API steel line‐pipe. Mater Lett. 61 (2007) 5178‐5180.

DOI: 10.1016/j.matlet.2007.04.007

Google Scholar

[22] Sang YS, Byoungchul H, Sangho K, Sunghak L. Fracture toughness analysis in transition temperature region of API X70 pipeline steels. Mater Sci Eng A, 429 (2006) 196‐204.

DOI: 10.1016/j.msea.2006.05.086

Google Scholar

[23] Heiser F, Hertzberg R. Anisotropy of fatigue crack propagation. J Basic Eng. 93 (1971) 211-217.

DOI: 10.1115/1.3425215

Google Scholar

[24] Byoungchul H, Yang GK, Sunghak L, Young MK, Nack JK, Jang YJ. Effective grain size and Charpy impact properties of high toughness X70 pipeline steels. Metall Mater Trans A. 36 (2004) 2107‐2114.

DOI: 10.1007/s11661-005-0331-9

Google Scholar

[25] Kichkina, M. Yu. Matrosov, L. I. Efron, M. B. Klyukvin, and A. V. Golovanov. Effect of structural anisotropy of ferrite-bainite pipe steel on mechanical properties in tensile and impact bending tests. Metallurgist, 54 (2011) 808–816.

DOI: 10.1007/s11015-011-9379-5

Google Scholar

[26] Ohji K, Ogura K, Harada S, Taji T. Fatigue crack growth behavior of anisotropic rolled steel plate with special reference to laminated structure and inclusions. Bulletin of JSME, 21/156 (1978) 939-947.

DOI: 10.1299/jsme1958.21.939

Google Scholar

[27] Heiser F, Hertzberg R. Anisotropy of fatigue crack propagation in hot rolled banded steel plates. J Basic Eng. 93 (1971) 211-217.

DOI: 10.1115/1.3425215

Google Scholar

[28] M.A. Mohtadi-Bonab, M. Eskandari, H. Ghaednia, S. Das. Effect of microstructural parameters on fatigue crack propagation in an API X65 pipeline steel. Mater. Eng. Perform. 25 (2016) 4933-4940.

DOI: 10.1007/s11665-016-2335-6

Google Scholar

[29] M.A. Mohtadi-Bonab, M. Eskandari, M. Sanayei, S. Das. Microstructural aspects of intergranular and transgranular crack propagation in an API X65 steel pipeline related to fatigue failure Eng. Fail. Anal. 94 (2018) 214-225. https://doi.org/10.1016/j.engfailanal. 2018.08.014.

DOI: 10.1016/j.engfailanal.2018.08.014

Google Scholar

[30] Slot H, Nicoreac M, Maljaars J. Influence of material anisotropy on fatigue crack growth in C–Mn steels of existing structures. Fatigue Fract Eng Mater Struct. 43 (2020) 2527–2541.

DOI: 10.1111/ffe.13260

Google Scholar

[31] ASTM E18; Standard Test Methods for Rockwell Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024.

Google Scholar

[32] ASTM E-8; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024.

Google Scholar

[33] ASTM E466-21 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, in: American Society of Testing Materials Book of Standards, ASTM International, Philadelphia, USA, 2021:1-7, 2021.

DOI: 10.1520/e0466-96r02e01

Google Scholar

[34] ASTM E739-10(2015) Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data, in: American Society of Testing Materials Book of Standards, ASTM International, Philadelphia, USA, 2015:1-7, 2015.

Google Scholar

[35] ASTM E3-11(2017); Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2017.

Google Scholar

[36] ASTM E407-07(2015); Standard Practice for Microetching Metals and Alloys. ASTM International: West Conshohocken, PA, USA, 2015.

Google Scholar

[37] ASTM E112-13(2021); Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2021.

Google Scholar

[38] ASTM E45-18a; Standard Test Methods for Determining the Inclusion Content of Steel. ASTM International: West Con-shohocken, PA, USA, 2023.

Google Scholar

[39] ASTM E1268-01(2016); Standard Practice for Assessing the Degree of Banding or Orientation of Microstructures. ASTM International: West Conshohocken, PA, USA, 2016.

Google Scholar

[40] Pawlick K. Determination of the orientation distribution function from pole figures in arbitrarily defined cells. Physica status solidi (b), 134 (1986) 477‐483.

DOI: 10.1002/pssb.2221340205

Google Scholar

[41] Suk Woo Hong, Jae Mean Koo, Chang Sung Seok, Jae Won Kim, Joon Ho Kim, Seong Kyeong Hong, Fatigue life prediction for an API 5L X42 natural gas pipeline, Engineering Failure Analysis 56 (2015) 396–402.

DOI: 10.1016/j.engfailanal.2014.12.016

Google Scholar

[42] K. Pawlik, P. Ozga. LaboTex: the texture analysis software. 'Göttinger Arbeiten zur Geologie und Paläontologie', SB4 (1999).

Google Scholar

[43] El‐Danaf E., Baig M, Almajida A., Alshalfan W., Al‐Mojil M, Al‐Shahrani S. Mechanical, microstructure and texture characterization of API X65 steel. Materials and design, 47 (2013) 529‐538.

DOI: 10.1016/j.matdes.2012.12.031

Google Scholar

[44] Ray RK, Jonas JJ, Butron Guillén MP, Savoie J. Transformation textures in steels. ISIJ International, 34 (12) (1994) 927‐942.

DOI: 10.2355/isijinternational.34.927

Google Scholar

[45] Mintz B, Morrison WB, Welch PI, Davies GJ. The Relative Contributions of Texture and Grain Shape to the Properties of Warm‐Rolled Fe‐Mn Alloys. Berlin, Germany: Texture of Materials: Vol. II, Berlin Springer–Verlag, 2 (1978) 465‐473.

Google Scholar