[1]
K. Svirzhevskyi, O. Zabolotnyi, A. Tkachuk, V. Zablotskyi, D. Cagáňová, Methods of evaluating the wear resistance of the contact surfaces of rolling bearings. In: Tonkonogyi, V., et al. Advanced Manufacturing Processes II. InterPartner 2021. Lecture Notes in Mechanical Engineering. (2021) 453–463
DOI: 10.1007/978-3-030-68014-5_45
Google Scholar
[2]
M.X. Wei, K.M. Chen, S.Q. Wang, et al., Analysis for wear behaviors of oxidative wear, Tribology Letters. 42 (2011) 1–7
DOI: 10.1007/s11249-010-9741-y
Google Scholar
[3]
S.Q. Wang, M.X. Wei, F. Wang, et al., Transition of mild wear to severe wear in oxidative wear of h21 steel, Tribology Letters. 32 (2008) 67–72
DOI: 10.1007/s11249-008-9361-y
Google Scholar
[4]
H.A. Ajimotokan, Principles of frication, lubrication and wear. In: Principles and Applications of tribology, Springer Briefs in Applied Sciences and Technology. (2024)
DOI: 10.1007/978-3-031-57409-2_2
Google Scholar
[5]
I.S. Gershman, G. Fox-Rabinovich, E. Gershman, A. E. Mironov, J. L. Endrino, P. Podrabinnik, The conditions necessary for the formation of dissipative structures in tribo-films on friction surfaces that decrease the wear rate, Entropy. 25(5) (2023) 771
DOI: 10.3390/e25050771
Google Scholar
[6]
Y. Sun, R. Bailey, J. Zhang, et al., Effect of thermal oxidation on the dry sliding friction and wear behaviour of CP-Ti on CP-Ti tribopairs, Surface Science and Technology. 1 (15) (2023)
DOI: 10.1007/s44251-023-00015-4
Google Scholar
[7]
G. Deng, H. Zhu, A. K. Tieu, Advances in friction, lubrication, wear and oxidation in metals manufacturing, Metals. 13(3) (2023) 505
DOI: 10.3390/met13030505
Google Scholar
[8]
F. Delaunois, V.I. Stanciu, A. Megret, et al., Oxidation and wear behavior of high-speed steel and semi-high-speed steel used in hot strip mill, International Journal of Advanced Manufacturing Technology. 119 (2022) 677–689
DOI: 10.1007/s00170-021-08031-0
Google Scholar
[9]
R.A. Al-Samarai, Y. Al-Douri, Surface protection from wear through coating. in: friction and wear in metals, Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. (2024)
DOI: 10.1007/978-981-97-1168-0_5
Google Scholar
[10]
L.I. Kuksenova, V.I. Savenko, Structural changes and diffusion in the zone of contact deformation of copper alloys under friction, Metal Science and Heat Treatment. 65 (2024) 790–800
DOI: 10.1007/s11041-024-01007-3
Google Scholar
[11]
L. Markashova, Y. Tyurin, O. Berdnikova, O. Kolisnichenko, I. Polovetskyi, Ye. Titkov, Effect of nano-structured factors on the properties of the coatings produced by detonation spraying method, Lecture Notes in Mechanical Engineering. (2019) 109–117
DOI: 10.1007/978-981-13-6133-3_11
Google Scholar
[12]
O. Berdnikova, O. Kushnarova, A. Bernatskyi, T. Alekseienko, Y. Polovetskyi, M. Khokhlov, Structure peculiarities of the surface layers of structural steel under laser alloying, Proceedings of the 2020 IEEE 10th International Conference on Nanomaterials: Applications and Properties, NAP 2020. 1 (2020) 9309615
DOI: 10.1109/NAP51477.2020.9309615
Google Scholar
[13]
O.M. Berdnikova, Yu.M. Tyurin, O.V. Kolisnichenko, E.P Titkov, L.Т. Yerеmyеyevа, nanoscale structures of detonation-sprayed metal–ceramic coatings of the Ni–Cr–Fe–B–Si system, Nanosistemi, Nanomateriali, Nanotehnologii. 20 (1) (2022) 97–109
DOI: 10.15407/nnn.20.01.097
Google Scholar
[14]
V. Aulin, et al., Tribodiagnosis of the surface damage of tribo-coupling parts materials during machine operation, Procedia Structural Integrity. 59 (2024) 428-435
DOI: 10.1016/j.prostr.2024.04.061
Google Scholar
[15]
O. Lyashuk, A. Gupka, Y. Pyndus, V. Gupka, M. Sipravska, М. Stashkiv, The tribology of the car: Research methodology and evaluation criteria ICCPT 2019: Current Problems of Transport: Proceedings of the 1st International Scientific Conference, Ternopil, Ukraine, May 28-29. (2019) 231-237
Google Scholar
[16]
V. Korzhyk, V. Khaskin, A. Grynyuk, V. Shcheretskiy, N Fialko, Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium, Eastern-European Journal of Enterprise Technologies. 4(12) (2021) 6-17
DOI: 10.15587/1729-4061.2021.238634
Google Scholar
[17]
G.M. Hryhorenko, L.I. Adeeva, A.Y. Tunik, V.N. Korzhik, M.V. Kindrachuk, O.V. Tisov, Metallo formation of microstructure of plasma-arc coatings obtained using powder wires with steel skin and B C + (Cr, Fe) C + Al filler, Metallophysics and Advanced Technologies. 42 (9) (2020) 1265-1282
DOI: 10.15407/mfint.42.09.1265
Google Scholar
[18]
G.M. Grigorenko, L.I. Adeeva, A.Y. Tunik, V.N. Korzhik, M.V Karpets, Plasma arc coatings produced from powder-cored wires with steel sheaths, Powder Metallurgy and Metal Ceramics. 50 (5-6) (2020) 318-329
DOI: 10.1007/s11106-020-00165-2
Google Scholar
[19]
M. Pashechko, K. Dziedzic, P. Stukhliak, M. Barszcz, J. Borc, J. Jozwik, Wear resistance of eutectic welding coatings of iron-based Fe–Mn–C–B–Si–Ni–Cr at increased temperature, Journal of Friction and Wear. 43 (1) (2022) 90–94
DOI: 10.32864/0202-4977-2022-43-1-128-135
Google Scholar
[20]
N.M. Abdeltawab, A.M.K. Esawi, A. Wifi, Investigation of the wear behavior of dual-matrix aluminum–(aluminum–carbon nanotube), composites, Metal. 13 (2023) 1167
DOI: 10.3390/met13071167
Google Scholar
[21]
M.A. Hoque, C.-W. Yao, M. Khanal, I. Lian, Tribocorrosion behavior of micro/nanoscale surface coatings, Sensors. 22 (2022) 9974
DOI: 10.3390/s22249974
Google Scholar
[22]
W. Borek, T. Linek, T. Tański, P. Sureshkumar, Influence of the applied wc/c and crn + wc/c coatings on the surface protection of x2crni18-9 cavitation generators, Coatings. 15 (2025) 87
DOI: 10.3390/coatings15010087
Google Scholar
[23]
D. Shekhawat, A. Jain, N. Vashishtha, A.P. Singh, R. Kumar, Tribological performance comparison of lubricating greases for electric vehicle bearings, Lubricants. 13 (2025) 108
DOI: 10.3390/lubricants13030108
Google Scholar