[1]
X. Gao, G. Koval, and C. Chazallon, "A Discrete Element Model for Damage and Fatigue Crack Growth of Quasi-Brittle Materials," Adv. Mater. Sci. Eng., vol. 2019, p.1–15, Feb. 2019.
DOI: 10.1155/2019/6962394
Google Scholar
[2]
J. Arakawa, T. Hanaki, Y. Hayashi, H. Akebono, and A. Sugeta, "Effect of surface compressive residual stress introduced by surface treatment on fatigue properties of metallic material," MATEC Web Conf., vol. 165, p.18006, 2018.
DOI: 10.1051/matecconf/201816518006
Google Scholar
[3]
W. Schütz, "A history of fatigue," Eng. Fract. Mech., 1996.
Google Scholar
[4]
J. Moser and A. P. L. do Rosário, "Improving Hydropower Plant Efficiency by Applying a Digital Twin Model," Energies, vol. 15, no. 19, 7306, Oct. 2022.
Google Scholar
[5]
M. A. E. El-Sayed, "Optimization of Hydropower Plant Efficiency: A Review," Journal of Energy Systems, vol. 11, no. 1, pp.27-40, Mar. 2017.
Google Scholar
[6]
T. R. Adhikari, M. K. Kandel, and K. L. Bajracharya, "Hydropower Plant Efficiency Enhancement through Predictive Maintenance and Smart Grid Integration," in 2020 IEEE International Conference on Smart Grid and Clean Energy Technologies (SmartGridCleanEnergy), pp.1-6, Nov. 2020.
Google Scholar
[7]
D.S. Gashaw and T. H. Abeje, "Analysis of Fatigue Crack Propagation and Life Estimation of Pelton Turbine Bucket by Finite Element Method," Addis Ababa University, Addis Ababa Institute of Technology (M.Sc. Thesis), 2017.
DOI: 10.36868/ejmse.2024.09.02.093
Google Scholar
[8]
M.A.E. El-Sayed and H. M. S. El-Said, "Failure analysis of a Pelton impeller," Engineering Failure Analysis, vol. 18, no. 1, pp.278-285, Jan. 2011.
Google Scholar
[9]
J.R. Iriarte, J. L. A. Marín, and M. A. A. González, "Failure investigation of a Pelton turbine runner," in Procedia Engineering, vol. 10, pp.1957-1962, 2011.
Google Scholar
[10]
K.L. Roe and T. Siegmund, "An irreversible cohesive zone model for interface fatigue crack growth simulation," Eng. Fract. Mech., 2003.
DOI: 10.1016/s0013-7944(02)00034-6
Google Scholar
[11]
A. Carpinteri and M. Paggi, "A unified interpretation of the power laws in fatigue and the analytical correlations between cyclic properties of engineering materials," Int. J. Fatigue, 2009.
DOI: 10.1016/j.ijfatigue.2009.04.014
Google Scholar
[12]
M. H. El Haddad, K. N. Smith, and T. H. Topper, "Fatigue Crack Propagation of Short Cracks," J. Eng. Mater. Technol., 2010.
Google Scholar
[13]
O. Nguyen, E. A. Repetto, M. Ortiz, and R. A. Radovitzky, "A cohesive model of fatigue crack growth," Int. J. Fract., 2001.
Google Scholar
[14]
J.C. Newman, "The merging of fatigue and fracture mechanics concepts: A historical perspective," Prog. Aerosp. Sci., 1998.
Google Scholar
[15]
F. Kun, H. A. Carmona, J. S. Andrade, and H. J. Herrmann, "Universality behind Basquin's law of fatigue," Phys. Rev. Lett., (2008)
DOI: 10.1103/physrevlett.100.094301
Google Scholar
[16]
J.R. Rice, "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks," J. Appl. Mech., 1968.
DOI: 10.21236/ad0653716
Google Scholar
[17]
G. P. Cherepanov, "Crack propagation in continuous media: PMM vol. 31, no. 3, 1967, p.476–488," J. Appl. Math. Mech., vol. 31, no. 3, p.503–512, (1967)
DOI: 10.1016/0021-8928(67)90034-2
Google Scholar
[18]
S. Suresh, "Fatigue of Materials," Cambridge University Press, 2nd ed., 1998.
Google Scholar
[19]
J. A. Bannantine, J. J. Comer, and J. L. Handley, "Fundamentals of Metal Fatigue Analysis," Prentice Hall, 1990.
Google Scholar
[20]
H. O. Fuchs and R. I. Stephens, "Metal Fatigue in Engineering," John Wiley & Sons, 2nd ed., 1980.
Google Scholar
[21]
P. Paris and F. Erdogan, "A Critical Analysis of Crack Propagation Laws," Journal of Basic Engineering (ASME), vol. 85, no. 4, pp.528-534, Dec. 1963.
DOI: 10.1115/1.3656902
Google Scholar
[22]
C. M. Sonsino, "Fatigue Design of Components with Welds and Notches," International Journal of Fatigue, vol. 25, no. 9-11, pp.1145-1153, Sep.-Nov. 2003.
Google Scholar
[23]
R. Schütz, "Fatigue life prediction of components with variable amplitude loading," Fatigue & Fracture of Engineering Materials & Structures, vol. 20, no. 8, pp.1109-1121, Aug. 1997.
Google Scholar
[24]
Y. Murakami, "Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions," Elsevier Science, 2nd ed., 2002.
Google Scholar
[25]
N. E. Dowling, "Fatigue Life Prediction for Complex Loadings," Journal of Pressure Vessel Technology (ASME), vol. 116, no. 1, pp.58-69, Feb. 1994.
Google Scholar