[1]
Yu, Zheng-Yong, et al. "Multiaxial fatigue damage parameter and life prediction without any additional material constants." Materials 10.8 (2017): 923.
DOI: 10.3390/ma10080923
Google Scholar
[2]
Carpinteri, Andrea, Andrea Spagnoli, and Sabrina Vantadori. "A review of multiaxial fatigue criteria for random variable amplitude loads." Fatigue & Fracture of Engineering Materials & Structures 40.7 (2017): 1007-1036.
DOI: 10.1111/ffe.12619
Google Scholar
[3]
Doong, Shiing-Hwa, D. F. Socie, and I. M. Robertson. "Dislocation substructures and nonproportional hardening." (1990): 456-464.
DOI: 10.1115/1.2903357
Google Scholar
[4]
Ding, Xiang-qun, Guo-qiu He, and Cheng-shu Chen. "Study on the dislocation sub-structures of Al–Mg–Si alloys fatigued under non-proportional loadings." Journal of materials science 45 (2010): 4046-4053.
DOI: 10.1007/s10853-010-4487-3
Google Scholar
[5]
Chen, Xu, Qin Gao, and X‐F. Sun. "Low‐cycle fatigue under non‐proportional loading." Fatigue & Fracture of Engineering Materials & Structures 19.7 (1996): 839-854.
DOI: 10.1111/j.1460-2695.1996.tb01020.x
Google Scholar
[6]
Bentachfine, S., et al. "Biaxial low cycle fatigue under non-proportional loading of a magnesium-lithium alloy." Engineering fracture mechanics 54.4 (1996): 513-522.
DOI: 10.1016/0013-7944(95)00223-5
Google Scholar
[7]
Fatemi, Ali, and Darrell F. Socie. "A critical plane approach to multiaxial fatigue damage including out‐of‐phase loading." Fatigue & Fracture of Engineering materials & structures 11.3 (1988): 149-165.
DOI: 10.1111/j.1460-2695.1988.tb01169.x
Google Scholar
[8]
Itoh, Takamoto, et al. "Nonproportional low cycle fatigue criterion for type 304 stainless steel." (1995): 285-292.
DOI: 10.1115/1.2804541
Google Scholar
[9]
Chen, Jie, and Yongming Liu. "Fatigue modeling using neural networks: A comprehensive review." Fatigue & Fracture of Engineering Materials & Structures 45.4 (2022): 945-979.
DOI: 10.1111/ffe.13640
Google Scholar
[10]
Bock, Frederic E., et al. "A review of the application of machine learning and data mining approaches in continuum materials mechanics." Frontiers in Materials 6 (2019): 110.
Google Scholar
[11]
Salifu, Smith, and Peter Apata Olubambi. "A Review of Fatigue Failure and Life Estimation Models: From Classical Methods to Innovative Approaches." Science, Engineering and Technology 4.2 (2024): 123-151.
DOI: 10.54327/set2024/v4.i2.140
Google Scholar
[12]
Li, Xin, Haoran Yang, and Jianwei Yang. "Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network." Metals 14.4 (2024): 381.
DOI: 10.3390/met14040381
Google Scholar
[13]
Yang, Jingye, et al. "A novel method of multiaxial fatigue life prediction based on deep learning." International Journal of Fatigue 151 (2021): 106356.
DOI: 10.1016/j.ijfatigue.2021.106356
Google Scholar
[14]
Wang, Yantian, et al. "Two fatigue life prediction models based on the critical plane theory and artificial neural networks." Metals 14.8 (2024): 938.
DOI: 10.3390/met14080938
Google Scholar
[15]
Zhu, Yifeng, et al. "A real-time remaining fatigue life prediction approach based on a hybrid deep learning network." Processes 11.11 (2023): 3220.
DOI: 10.3390/pr11113220
Google Scholar
[16]
Zhang, Peng, et al. "Neural network integrated with symbolic regression for multiaxial fatigue life prediction." International Journal of Fatigue 188 (2024): 108535.
DOI: 10.1016/j.ijfatigue.2024.108535
Google Scholar
[17]
Yakovchuk, P. V., E. V. Savchuk, and S. M. Shukayev. "Critical Plane Approach-Based Fatigue Life Prediction for Multiaxial Loading: A New Model and its Verification." Strength of Materials 56.2 (2024): 281-291.
DOI: 10.1007/s11223-024-00647-3
Google Scholar
[18]
You, Bong-Ryul, and Soon-Bok Lee. "A critical review on multiaxial fatigue assessments of metals." International Journal of Fatigue 18.4 (1996): 235-244.
DOI: 10.1016/0142-1123(96)00002-3
Google Scholar
[19]
Troshchenko, V.T., and L.A. Sosnovskii. Soprotivlenie ustalosti metallov i splavov. Spravochnik. Chast' 1. Kyiv: Naukova Dumka, (1987): 512 pp
Google Scholar
[20]
Savchuk, Y., and S. Shukayev. "Comparison of critical plane models for multiaxial fatigue life prediction." Mechanics and Advanced Technologies 7.3 (2023): 99.
DOI: 10.20535/2521-1943.2023.7.3.287522
Google Scholar
[21]
Karolczuk, Aleksander, and Ewald Macha. "A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials." International Journal of Fracture 134 (2005): 267-304.
DOI: 10.1007/s10704-005-1088-2
Google Scholar
[22]
Wang, C. H., and M. W. Brown. "A path‐independent parameter for fatigue under proportional and non‐proportional loading." Fatigue & fracture of engineering materials & structures 16.12 (1993): 1285-1297.
DOI: 10.1111/j.1460-2695.1993.tb00739.x
Google Scholar
[23]
Wu, Zhirong, Xuteng Hu, and Yingdong Song. "Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter." Jixie Gongcheng Xuebao (Chinese Journal of Mechanical Engineering) 49.2 (2013): 59-66.
DOI: 10.3901/jme.2013.02.059
Google Scholar
[24]
Wu, Zhi-Rong, Xu-Teng Hu, and Ying-Dong Song. "Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading." International Journal of Fatigue 59 (2014): 170-175.
DOI: 10.1016/j.ijfatigue.2013.08.028
Google Scholar
[25]
Zhu, Shun-Peng, et al. "Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials." International Journal of Fatigue 112 (2018): 279-288.
DOI: 10.1016/j.ijfatigue.2018.03.028
Google Scholar
[26]
Skibicki, Dariusz. Phenomena and computational models of non-proportional fatigue of materials. Springer, (2014).
Google Scholar
[27]
Itoh, Takamoto, et al. "A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading." International Journal of Fatigue 28.5-6 (2006): 459-466.
DOI: 10.1016/j.ijfatigue.2005.08.007
Google Scholar
[28]
Wu, Min, et al. "Low cycle fatigue life of Ti–6Al–4V alloy under non-proportional loading. "International journal of fatigue 44 (2012): 14-20.
DOI: 10.1016/j.ijfatigue.2012.06.006
Google Scholar
[29]
Borodii, M. V. "Determination of cycle nonproportionality coefficient." Strength of Materials 27.5 (1995): 265-272.
DOI: 10.1007/bf02208497
Google Scholar
[30]
Borodii, M. V., and V. A. Strizhalo. "Analysis of the experimental data on a low cycle fatigue under nonproportional straining." International Journal of Fatigue 22.4 (2000): 275-282.
DOI: 10.1016/s0142-1123(00)00005-0
Google Scholar
[31]
Borodii, M. V., and M. P. Adamchuk. "Life assessment for metallic materials with the use of the strain criterion for low-cycle fatigue." International Journal of Fatigue 31.10 (2009): 1579-1587.
DOI: 10.1016/j.ijfatigue.2009.04.011
Google Scholar
[32]
Zhong, Bo, et al. "A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection." International Journal of Fatigue 102 (2017): 241-251.
DOI: 10.1016/j.ijfatigue.2017.04.013
Google Scholar
[33]
Ellyin, F., K. Golos, and Z. Xia. "In-phase and out-of-phase multiaxial fatigue." Journal of Engineering Materials and Technology, 113(1), (1991): 112
DOI: 10.1115/1.2903365
Google Scholar
[34]
Shukaev, S., Panasovskii, K., and Gladskii, M. "Fatigue life assessment for metal alloys under nonproportional low-cycle loading. " Strength of materials, 39, (2007): 358-364.
DOI: 10.1007/s11223-007-0040-2
Google Scholar
[35]
Fatemi, Ali, and Nima Shamsaei. "Multiaxial fatigue: An overview and some approximation models for life estimation." International Journal of Fatigue 33.8 (2011): 948-958.
DOI: 10.1016/j.ijfatigue.2011.01.003
Google Scholar
[36]
Borodii, M.V., and S. M. Shukaev. "Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime." International Journal of Fatigue 29.6 (2007): 1184-1191.
DOI: 10.1016/j.ijfatigue.2006.06.014
Google Scholar
[37]
Skibicki, Dariusz, and Łukasz Pejkowski. "The relationship between additional non-proportional hardening coefficient and fatigue life." International Journal of Fatigue 123 (2019): 66-78.
DOI: 10.1016/j.ijfatigue.2019.02.011
Google Scholar
[38]
Scott, M., & Su-In, L. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30 (2017): 4765-4774.
Google Scholar