Input Parameter Analysis for Low-Cycle Multiaxial Fatigue Models Using Artificial Neural Network

Article Preview

Abstract:

This study investigates the optimization of input parameters for artificial neural networks (ANNs) to enhance the accuracy of fatigue life prediction under multiaxial loading conditions. Three models were developed using input features derived from the Fatemi–Socie and Ito et al. approaches, as well as a combined set of parameters. The dataset, consisting of 226 experimental results for 10 different materials and various loading paths, was extended to 427 data points through interpolation and normalized using min–max scaling. SHAP (SHapley Additive exPlanations) analysis was applied to assess the contribution of each parameter to fatigue life prediction. The results identified the shear strain range on the maximum shear plane, the normal strain range on the maximum tensile plane, and the non-proportionality parameter as the most influential features, along with Coffin–Manson equation coefficients characterizing material fatigue behavior. The material non-proportional hardening parameter, treated as a constant, was not found to be significant, indicating the potential need for its functional adaptation based on strain amplitude. Retraining the ANN using only the most relevant parameters maintained prediction accuracy, emphasizing their critical role.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-69

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu, Zheng-Yong, et al. "Multiaxial fatigue damage parameter and life prediction without any additional material constants." Materials 10.8 (2017): 923.

DOI: 10.3390/ma10080923

Google Scholar

[2] Carpinteri, Andrea, Andrea Spagnoli, and Sabrina Vantadori. "A review of multiaxial fatigue criteria for random variable amplitude loads." Fatigue & Fracture of Engineering Materials & Structures 40.7 (2017): 1007-1036.

DOI: 10.1111/ffe.12619

Google Scholar

[3] Doong, Shiing-Hwa, D. F. Socie, and I. M. Robertson. "Dislocation substructures and nonproportional hardening." (1990): 456-464.

DOI: 10.1115/1.2903357

Google Scholar

[4] Ding, Xiang-qun, Guo-qiu He, and Cheng-shu Chen. "Study on the dislocation sub-structures of Al–Mg–Si alloys fatigued under non-proportional loadings." Journal of materials science 45 (2010): 4046-4053.

DOI: 10.1007/s10853-010-4487-3

Google Scholar

[5] Chen, Xu, Qin Gao, and X‐F. Sun. "Low‐cycle fatigue under non‐proportional loading." Fatigue & Fracture of Engineering Materials & Structures 19.7 (1996): 839-854.

DOI: 10.1111/j.1460-2695.1996.tb01020.x

Google Scholar

[6] Bentachfine, S., et al. "Biaxial low cycle fatigue under non-proportional loading of a magnesium-lithium alloy." Engineering fracture mechanics 54.4 (1996): 513-522.

DOI: 10.1016/0013-7944(95)00223-5

Google Scholar

[7] Fatemi, Ali, and Darrell F. Socie. "A critical plane approach to multiaxial fatigue damage including out‐of‐phase loading." Fatigue & Fracture of Engineering materials & structures 11.3 (1988): 149-165.

DOI: 10.1111/j.1460-2695.1988.tb01169.x

Google Scholar

[8] Itoh, Takamoto, et al. "Nonproportional low cycle fatigue criterion for type 304 stainless steel." (1995): 285-292.

DOI: 10.1115/1.2804541

Google Scholar

[9] Chen, Jie, and Yongming Liu. "Fatigue modeling using neural networks: A comprehensive review." Fatigue & Fracture of Engineering Materials & Structures 45.4 (2022): 945-979.

DOI: 10.1111/ffe.13640

Google Scholar

[10] Bock, Frederic E., et al. "A review of the application of machine learning and data mining approaches in continuum materials mechanics." Frontiers in Materials 6 (2019): 110.

Google Scholar

[11] Salifu, Smith, and Peter Apata Olubambi. "A Review of Fatigue Failure and Life Estimation Models: From Classical Methods to Innovative Approaches." Science, Engineering and Technology 4.2 (2024): 123-151.

DOI: 10.54327/set2024/v4.i2.140

Google Scholar

[12] Li, Xin, Haoran Yang, and Jianwei Yang. "Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network." Metals 14.4 (2024): 381.

DOI: 10.3390/met14040381

Google Scholar

[13] Yang, Jingye, et al. "A novel method of multiaxial fatigue life prediction based on deep learning." International Journal of Fatigue 151 (2021): 106356.

DOI: 10.1016/j.ijfatigue.2021.106356

Google Scholar

[14] Wang, Yantian, et al. "Two fatigue life prediction models based on the critical plane theory and artificial neural networks." Metals 14.8 (2024): 938.

DOI: 10.3390/met14080938

Google Scholar

[15] Zhu, Yifeng, et al. "A real-time remaining fatigue life prediction approach based on a hybrid deep learning network." Processes 11.11 (2023): 3220.

DOI: 10.3390/pr11113220

Google Scholar

[16] Zhang, Peng, et al. "Neural network integrated with symbolic regression for multiaxial fatigue life prediction." International Journal of Fatigue 188 (2024): 108535.

DOI: 10.1016/j.ijfatigue.2024.108535

Google Scholar

[17] Yakovchuk, P. V., E. V. Savchuk, and S. M. Shukayev. "Critical Plane Approach-Based Fatigue Life Prediction for Multiaxial Loading: A New Model and its Verification." Strength of Materials 56.2 (2024): 281-291.

DOI: 10.1007/s11223-024-00647-3

Google Scholar

[18] You, Bong-Ryul, and Soon-Bok Lee. "A critical review on multiaxial fatigue assessments of metals." International Journal of Fatigue 18.4 (1996): 235-244.

DOI: 10.1016/0142-1123(96)00002-3

Google Scholar

[19] Troshchenko, V.T., and L.A. Sosnovskii. Soprotivlenie ustalosti metallov i splavov. Spravochnik. Chast' 1. Kyiv: Naukova Dumka, (1987): 512 pp

Google Scholar

[20] Savchuk, Y., and S. Shukayev. "Comparison of critical plane models for multiaxial fatigue life prediction." Mechanics and Advanced Technologies 7.3 (2023): 99.

DOI: 10.20535/2521-1943.2023.7.3.287522

Google Scholar

[21] Karolczuk, Aleksander, and Ewald Macha. "A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials." International Journal of Fracture 134 (2005): 267-304.

DOI: 10.1007/s10704-005-1088-2

Google Scholar

[22] Wang, C. H., and M. W. Brown. "A path‐independent parameter for fatigue under proportional and non‐proportional loading." Fatigue & fracture of engineering materials & structures 16.12 (1993): 1285-1297.

DOI: 10.1111/j.1460-2695.1993.tb00739.x

Google Scholar

[23] Wu, Zhirong, Xuteng Hu, and Yingdong Song. "Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter." Jixie Gongcheng Xuebao (Chinese Journal of Mechanical Engineering) 49.2 (2013): 59-66.

DOI: 10.3901/jme.2013.02.059

Google Scholar

[24] Wu, Zhi-Rong, Xu-Teng Hu, and Ying-Dong Song. "Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading." International Journal of Fatigue 59 (2014): 170-175.

DOI: 10.1016/j.ijfatigue.2013.08.028

Google Scholar

[25] Zhu, Shun-Peng, et al. "Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials." International Journal of Fatigue 112 (2018): 279-288.

DOI: 10.1016/j.ijfatigue.2018.03.028

Google Scholar

[26] Skibicki, Dariusz. Phenomena and computational models of non-proportional fatigue of materials. Springer, (2014).

Google Scholar

[27] Itoh, Takamoto, et al. "A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading." International Journal of Fatigue 28.5-6 (2006): 459-466.

DOI: 10.1016/j.ijfatigue.2005.08.007

Google Scholar

[28] Wu, Min, et al. "Low cycle fatigue life of Ti–6Al–4V alloy under non-proportional loading. "International journal of fatigue 44 (2012): 14-20.

DOI: 10.1016/j.ijfatigue.2012.06.006

Google Scholar

[29] Borodii, M. V. "Determination of cycle nonproportionality coefficient." Strength of Materials 27.5 (1995): 265-272.

DOI: 10.1007/bf02208497

Google Scholar

[30] Borodii, M. V., and V. A. Strizhalo. "Analysis of the experimental data on a low cycle fatigue under nonproportional straining." International Journal of Fatigue 22.4 (2000): 275-282.

DOI: 10.1016/s0142-1123(00)00005-0

Google Scholar

[31] Borodii, M. V., and M. P. Adamchuk. "Life assessment for metallic materials with the use of the strain criterion for low-cycle fatigue." International Journal of Fatigue 31.10 (2009): 1579-1587.

DOI: 10.1016/j.ijfatigue.2009.04.011

Google Scholar

[32] Zhong, Bo, et al. "A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection." International Journal of Fatigue 102 (2017): 241-251.

DOI: 10.1016/j.ijfatigue.2017.04.013

Google Scholar

[33] Ellyin, F., K. Golos, and Z. Xia. "In-phase and out-of-phase multiaxial fatigue." Journal of Engineering Materials and Technology, 113(1), (1991): 112

DOI: 10.1115/1.2903365

Google Scholar

[34] Shukaev, S., Panasovskii, K., and Gladskii, M. "Fatigue life assessment for metal alloys under nonproportional low-cycle loading. " Strength of materials, 39, (2007): 358-364.

DOI: 10.1007/s11223-007-0040-2

Google Scholar

[35] Fatemi, Ali, and Nima Shamsaei. "Multiaxial fatigue: An overview and some approximation models for life estimation." International Journal of Fatigue 33.8 (2011): 948-958.

DOI: 10.1016/j.ijfatigue.2011.01.003

Google Scholar

[36] Borodii, M.V., and S. M. Shukaev. "Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime." International Journal of Fatigue 29.6 (2007): 1184-1191.

DOI: 10.1016/j.ijfatigue.2006.06.014

Google Scholar

[37] Skibicki, Dariusz, and Łukasz Pejkowski. "The relationship between additional non-proportional hardening coefficient and fatigue life." International Journal of Fatigue 123 (2019): 66-78.

DOI: 10.1016/j.ijfatigue.2019.02.011

Google Scholar

[38] Scott, M., & Su-In, L. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30 (2017): 4765-4774.

Google Scholar