[1]
Zh. Q. Gu, Ch. J. Mi, Y. T. Wang, J. X. Jiang, A-Type Frame Fatigue Life Estimation of a Mining Dump Truck Based on Modal Stress Recovery Method, Engineering Failure Analysis, 26 (2012) 89-99.
DOI: 10.1016/j.engfailanal.2012.07.004
Google Scholar
[2]
J. Moon, S. Ryu, W. Na, Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe, SAE 2013 World Congress & Exhibition (2013) SAE Technical Paper 2013-01-1211.
DOI: 10.4271/2013-01-1211
Google Scholar
[3]
Q. Q. Dong, J. Han, Zh. H. Liu, Y. Wu, J. Cao, Fatigue Analysis of Light Truck Frame Based on Virtual Proving Ground Technology, Proceedings of China SAE Congress 2023: Selected Papers. SAE-China 2023. Lecture Notes in Electrical Engineering, 1151 (2024) 702–710. Springer, Singapore
DOI: 10.1007/978-981-97-0252-7_50
Google Scholar
[4]
N. Bishop, F. Sherratt, Finite Element Based Fatigue Calculations, HT17, NAFEMS, United Kingdom, 2000, ISBN 978-1-83979-008-9.
DOI: 10.59972/ta5h05jd
Google Scholar
[5]
T.D. Vu, D.W. Dong, B. Yan, Ch.R. Hua, Q.Y. Tu, Durability Analysis on Hydraulic Suspension System of Modular Assembled Trailer, Applied Mechanics and Materials, 105-107 (2011) 227-232.
DOI: 10.4028/www.scientific.net/amm.105-107.227
Google Scholar
[6]
S. H. Zhu, Zh. J. Xiao, X. Y. Li, Vehicle Frame Fatigue Life Prediction Based on Finite Element and Multi-Body Dynamic, Applied Mechanics and Materials, 141 (2011) 578-585.
DOI: 10.4028/www.scientific.net/amm.141.578
Google Scholar
[7]
D. T. Do, T. D. Vu, D. T. Nguyen, A. T. Do, Fatigue Life Evaluation of Bogie Frame of Railway Covered Goods Wagons Using a Combined FEA/MDS Approach, Proceedings of The 3rd International Conference on Sustainability in Civil Engineering (ICSCE), 26-27 November 2020, Hanoi, Vietnam. Lecture Notes in Civil Engineering, 145 (2021) 351-357. Springer, Singapore.
DOI: 10.1007/978-981-16-0053-1_44
Google Scholar
[8]
K.R. Kashyzadeh, K. Souri, A. G. Bayat, R. S. Jabalbarez, M. Ahmad, Fatigue Life Analysis of Automotive Cast Iron Knuckle under Constant and Variable Amplitude Loading Conditions, Applied Mechanics, 3 (2) (2022) 517-532.
DOI: 10.3390/applmech3020030
Google Scholar
[9]
D. L. Zhou, J. L. Chang, Fatigue Analysis of a Light Truck Rear Axle Based on Virtual Iteration Method, Shock and Vibration, 2022 (1) 1-13.
DOI: 10.1155/2022/8598491
Google Scholar
[10]
BS ISO 8608:2016, Mechanical Vibration - Road Surface Profiles - Reporting of Measured Data, British Standards Institution, London, 2016. ISBN: 978-0-580-94289-1.
DOI: 10.3403/30341600
Google Scholar
[11]
H.B. Ren, S. Zh. Chen, Zh. Ch. Wu, Model of excitation of random road profile in time domain for a vehicle with four wheels, 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 19-22 August 2011, Jilin, China. IEEE Xplore, 1 (2011) 2332-2335.
DOI: 10.1109/mec.2011.6025960
Google Scholar
[12]
Zh. G. Hu, Y. L. Zhang, J. P. Ye, Sh. Y. Song, L. P. Chen, Numerical Modeling and Simulation of Random Road Surface Using IFFT Method, Advanced Materials Research, 199-200 (2011) 999-1004.
DOI: 10.4028/www.scientific.net/amr.199-200.999
Google Scholar
[13]
P. Múčka, Simulated Road Profiles According to ISO 8608 in Vibration Analysis, Journal of Testing and Evaluation, 46 (1) (2018) 405-418.
DOI: 10.1520/jte20160265
Google Scholar
[14]
Y.L. Lee, D. Taylor, Chapter 4: Stress-Based Fatigue Analysis and Design, in: Y. L. Lee, J. Pan, R. B. Hathaway, M. E. Barkey, Fatigue Testing and Analysis: Theory and Practice, Elsevier Butterworth–Heinemann Press, 2005, ISBN 978-0-7506-7719-6.
DOI: 10.1016/j.ijfatigue.2004.12.001
Google Scholar
[15]
HBM United Kingdom Limited, DesignLife Theory Guide, E-book, Rotherham, HBM United Kingdom Limited, 2013.
Google Scholar
[16]
Edited by the Editorial Committee of "Mechanical Engineering Material Properties Data Handbook", Chapter 2: Carbon Steel and Low-Alloy Steel, in: Mechanical Engineering Materials Properties Data Handbook, China Machinery Industry Press (Chinese), 1995, ISBN 7-111-04313-8.
Google Scholar
[17]
A. Fatemi, L. Yang, Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials, International Journal of Fatigue, 20 (1) (1998) 9-34.
DOI: 10.1016/s0142-1123(97)00081-9
Google Scholar
[18]
O.C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, Chapter 1: The Standard Discrete System and Origins of the Finite Element Method, in: The Finite Element Method: Its Basis and Fundamentals, 6th ed., Elsevier Butterworth-Heinemann Press, 2005, ISBN 978-0-7506-6320-0.
DOI: 10.1016/b978-1-85617-633-0.00001-0
Google Scholar
[19]
A. Ašonja, E. Desnica, I. Palinkaš, Analysis of the Static Behavior of the Shaft Based on Finite Element Method Under Effect of Different Variants of Load, Applied Engineering Letters, 1 (2016) 8-15.
Google Scholar
[20]
S. Milojevi´c, O. Stopka, O. Orynycz, K. Tucki, B. Šarkan, S. Savi´c, Exploitation and Maintenance of Biomethane-Powered Truck and Bus Fleets to Assure Safety and Mitigation of Greenhouse Gas Emissions, Energies 2025, 18(9), 2218.
DOI: 10.3390/en18092218
Google Scholar
[21]
B. Mohammed, Numerical Modeling of the Crack Propagation Parameters of Two Different Elements by the FEM Method, Advanced Engineering Letters, 3(1) (2024) 36-41.
DOI: 10.46793/adeletters.2024.3.1.5
Google Scholar
[22]
Y. M. Li, Sh. Q. Qin, Temperature Effect Analysis of Pre-Tension and Deformation Characteristics of Planar Membrane Structure, IOP Conference Series: Earth and Environmental Science, 267 (2019) 052012.
DOI: 10.1088/1755-1315/267/5/052012
Google Scholar
[23]
J. Y. Wong, Chapter 1: Mechanics Of Pneumatic Tires, in: Theory of Ground Vehicles, 3rd ed., John Wiley & Sons, Inc Press, 2001, ISBN 978-0-4713-5461-1.
Google Scholar
[24]
D. W. Harwood, D. J. Torbic, K. R. Richard, W. D. Glauz, L. Elefteriadou, Chapter 5: Truck Characteristics Related to Geometric Designnchrp, in: Review of Truck Characteristics as Factors in Roadway Design, Transportation Research Board of the National Academies Press, 2003, ISBN 0-309-08779-1.
DOI: 10.17226/23379
Google Scholar
[25]
A. Hobbacher, Recommendation for Fatigue Design of Welded Joints and Components, 2nd ed., IIW Collection, Springer Cham, 2016, ISBN 978-3-319-23757-2.
DOI: 10.1007/978-3-319-23757-2
Google Scholar