[1]
Wei Li, Ning Gao, Hongqiao Zhao, and Xinxin Xing. Crack initiation and early growth behavior of TC4 titanium alloy under high cycle fatigue and very high cycle fatigue. Journal of Materials Research, 33(8):935-945, 2018.
DOI: 10.1557/jmr.2017.476
Google Scholar
[2]
Emre Akgun, Xiang Zhang, Tristan Lowe, Yanhui Zhang, and Matthew Doré. Fatigue of laser powder-bed fusion additive manufactured Ti-6Al-4V in presence of process-induced porosity defects. Engineering Fracture Mechanics, 259, 2022.
DOI: 10.1016/j.engfracmech.2021.108140
Google Scholar
[3]
Ziyang Zhang, Qingyang Liu, and Dazhong Wu. Predicting stress-strain curves using transfer learning: Knowledge transfer across polymer composites. Materials &; Design, 218, 2022.
DOI: 10.1016/j.matdes.2022.110700
Google Scholar
[4]
Alessio Centola, Alberto Ciampaglia, Andrea Tridello, and Davide Salvatore Paolino. Machine learning methods to predict the fatigue life of selectively laser melted Ti6Al4V components. Fatigue &; Fracture of Engineering Materials &; Structures, 46(11):4350-4370, 2023.
DOI: 10.1111/ffe.14125
Google Scholar
[5]
Arnaud Doucet, Simon Godsill, and Christian Robert. Marginal maximum a posteriori estimation using Markov chain Monte Carlo. Statistical Computing, 12(1):77-84, 2002. Publisher: Springer.
DOI: 10.1023/a:1013172322619
Google Scholar
[6]
Anton du Plessis, Ina Yadroitsava, and Igor Yadroitsev. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Materials &; Design, 187:108385, 2020.
DOI: 10.1016/j.matdes.2019.108385
Google Scholar
[7]
Mustafa Awd and Frank Walther. AI-Powered Very-High-Cycle Fatigue Control: Optimizing Microstructural Design for Selective Laser Melted Ti-6Al-4V. Materials, 2025.
DOI: 10.3390/ma18071472
Google Scholar
[8]
Lang Cheng, Zimeng Jiang, Hesai Wang, Chenguang Ma, Aoming Zhang, Honghong Du, Canneng Fang, Kai Wu, and Yingjie Zhang. Low-rank adaptive transfer learning based for multilabel defect detection in laser powder bed fusion. Optics and Lasers in Engineering, 184:108683, 2025.
DOI: 10.1016/j.optlaseng.2024.108683
Google Scholar
[9]
Erik Westphal and Hermann Seitz. A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks. Additive Manufacturing, 41:101965, 2021.
DOI: 10.1016/j.addma.2021.101965
Google Scholar
[10]
Omid Sedehi, Costas Papadimitriou, and Lambros S. Katafygiotis. Hierarchical Bayesian uncertainty quantification of Finite Element models using modal statistical information. Mechanical Systems and Signal Processing, 179:109296, 2022.[11] A. Das and N. Debnath. A Bayesian finite element model updating with combined normal and lognormal probability distributions using modal measurements. Applied Mathematical Modelling, 61:457-483, 2018.
DOI: 10.1016/j.ymssp.2022.109296
Google Scholar
[12]
Mustafa Awd, Shafaqat Siddique, and Frank Walther. Microstructural damage and fracture mechanisms of selective laser melted Al-Si alloys under fatigue loading. Theoretical and Applied Fracture Mechanics, 106:102483, 2020.
DOI: 10.1016/j.tafmec.2020.102483
Google Scholar
[13]
Mustafa Awd, Shafaqat Siddique, Jan Johannsen, Claus Emmelmann, and Frank Walther. Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted AlSi10Mg alloy. International Journal of Fatigue, 124:55-69, 2019.
DOI: 10.1016/j.ijfatigue.2019.02.040
Google Scholar
[14]
Saurabh Gairola, Jayaganthan Rengaswamy, and Raviraj Verma. A study on XFEM simulation of tensile, fracture toughness, and fatigue crack growth behavior of Al 2024 alloy through fatigue crack growth rate models using genetic algorithm. Fatigue &; Fracture of Engineering Materials &; Structures, 2023.
DOI: 10.1111/ffe.13987
Google Scholar