[1]
G. Pivnyak, V. Bondarenko, I. Kovalevska, New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining, Book, CRC Press (2015) 607 p
DOI: 10.1201/b19901
Google Scholar
[2]
I. Kovalevs'ka, V. Fomychov, M. Illiashov, V. Chervatuk, The formation of the finite-element model of the system "undermined massif-support of stope", Geomechanical Processes During Underground Mining (2012) 73-80
DOI: 10.1201/b13157-13
Google Scholar
[3]
V. Bondarenko, I. Kovalevska, H. Symanovych, O. Husiev, Changes in the rock mass geomechanical properties with account of the Chaos Theory based on a computational experiment. 15th Chaotic Modeling and Simulation International Conference (2023) 41-52
DOI: 10.1007/978-3-031-27082-6_4
Google Scholar
[4]
I. Kovalevska, V. Samusia, D. Kolosov, V. Snihur, T. Pysmenkova, Stability of the overworked slightly metamorphosed massif around mine working, Mining of Mineral Deposits 14(2) (2020) 43-52
DOI: 10.33271/mining14.02.043
Google Scholar
[5]
V. Bondarenko, I. Kovalevs'ka, R. Svystun, Y. Cherednichenko, Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame-bolt support. Annual Scientific-Technical Collection – Mining of Mineral Deposits (2013) 5-9
DOI: 10.1201/b16354-3
Google Scholar
[6]
A.O. Bondarenko, R.P. Naumenko, Comprehensive solution of recycling waste from stone processing industry. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4 (2019) 96‒101
DOI: 10.29202/nvngu/2019-4/14
Google Scholar
[7]
Ye.K. Babets, A.A. Adamchuk, O.O. Shustov, O.O. Anisimov, O.O. Dmytruk, Determining conditions of using draglines in single-tier internal dump formation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6 (2020) 5–14
DOI: 10.33271/nvngu/2020-6/005
Google Scholar
[8]
I. Kovalevska, M. Zhuravkov, V. Chervatiuk, O. Husiev, V. Snihur, Generalization of trends in the influence of geomechanics factors on the choice of operation modes for the fastening system in the preparatory mine workings. Mining of Mineral Deposits 13(3) (2019) 1-11
DOI: 10.33271/mining13.03.001
Google Scholar
[9]
Y. Babets, O. Anisimov, O. Shustov, V. Komirna, I. Melnikova, Determination of economically viable option of liquidation the consequences of external dump deformation. E3S Web of Conferences 280 (2021) 08014
DOI: 10.1051/e3sconf/202128008014
Google Scholar
[10]
V.Yu. Volokhovskiy, V.P. Radin, M.B. Rudyak, Concentration of forces in cables and tractive capacity of rubber-cable conveyor belts with breakages, MEI Bulletin 5 (2010) 5-12.
Google Scholar
[11]
V.A. Ropay Mine Balancing Ropes: Monograph, Dnipropetrovsk. National Mining University, (2016) 263 p.
Google Scholar
[12]
Zh.B. Levchenya, Increase of reliability of butt-joint connections of conveyor belts at mining enterprises, PhD dissertation (2004)
Google Scholar
[13]
I.V. Bel'mas, Stress state of rubber-rope tapes during their random damages, Problemy Prochnosti i Nadezhnos'ti Mashin 6 (1993).45-48.
Google Scholar
[14]
L.V. Kolosov, I.V. Bel'mas Use of electrical models for investigating composites, Mechanics of Composite Materials 17(1) (1981) 115-119
DOI: 10.1007/BF00604895
Google Scholar
[15]
S. Daria Zade Numerical method of determining effective characteristics of unidirectional reinforced composites, Bulletin NTU "KhPI" 58 (2013) 71-77.
Google Scholar
[16]
W. Song, W. Shang, X. Li Finite element analysis of steel cord conveyor belt splice, ET Conference Publications 556 (2009).
DOI: 10.1049/cp.2009.1415
Google Scholar
[17]
L. Xianguo, L. Xinyu, S. Zhenqian, M. Changyun, Analysis of Strength Factors of Steel Cord Conveyor Belt Splices Based on the FEM, Advances in Materials Science and Engineering, Vol. 2019. ID 6926413.
DOI: 10.1155/2019/6926413
Google Scholar
[18]
G. Fedorko, V. Molnar, P. Michalik, M. Dovica, T. Kelemenová, T. Toth, Failure analysis of conveyor belt samples under tensile load, Journal of Industrial Textiles 48 (2018). 152808371876377.
DOI: 10.1177/1528083718763776
Google Scholar
[19]
M. Andrejiova, A. Grincova, D. Marasova, Failure analysis of the rubber-textile conveyor belts using classification models, Engineering Failure Analysis, 101 (2019). 407-417.
DOI: 10.1016/j.engfailanal.2019.04.001
Google Scholar
[20]
I.V. Belmas, D.L. Kolosov, A.L. Kolosov, S.V. Onyshchenko, Stress-strain state of rubber-cable tractive element of tubular shape, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2 (2018) 60-69.
DOI: 10.29202/nvngu/2018-2/5
Google Scholar
[21]
A. Kirjanów-Błażej, R. Błażej, L. Jurdziak, T. Kozłowski, Core damage increase assessment in the conveyor belt with steel cords, Diagnostyka 18 (2017) 93-98.
DOI: 10.3390/min14020174
Google Scholar
[22]
D. Romek, D. Ulbrich, J. Selech, J. Kowalczyk, R. Wlad, Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber-Quartz-Metal, Condition Materials (Basel), Aug 2, 2021; 14(15):4323.
DOI: 10.3390/ma14154323
Google Scholar
[23]
Y. Yao, B. Zhang, Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors. PLoS One, Jul 7, 2020, 15(7). e0235768.
DOI: 10.1371/journal.pone.0235768
Google Scholar
[24]
V. Kravets, V. Samusia, D. Kolosov, K. Bas, S. Onyshchenko, Discrete mathematical model of travelling wave of conveyor transport, E3S Web of Conf, 168, II International Conference Essays of Mining Science and Practice (2020).
DOI: 10.1051/e3sconf/202016800030
Google Scholar
[25]
K.S. Zabolotny, E.V. Panchenko, A.L. Zhupiev, Theory of multilayer rubber-cable rope winding: Monograph. Dnipropetrovsk, NGU, (2011).
Google Scholar
[26]
I. Belmas, D. Kolosov, O. Bilous, H. Tantsura, S. Onyshchenko, Stress state of elastic shell of standard sample in process of cable tear out testing, IOP Conference Series Earth and Environmental Science 1348 (2024) 012085
DOI: 10.1088/1755-1315/1348/1/012085
Google Scholar
[27]
J.S. Haddad, O. Denyshchenko, D. Kolosov, S. Bartashevskyi, V. Rastsvietaiev, O. Cherniaiev, Reducing Wear of the Mine Ropeways Components Basing Upon the Studies of Their Contact Interaction, Archives of Mining Sciences 66(4) (2021) 579-594.
DOI: 10.24425/ams.2021.139598
Google Scholar
[28]
I. Belmas, D. Kolosov, S. Onyshchenko, O. Bilous, H. Tantsura, Influence of Nonlinear Shear Modulus Change of Elastomeric Shell of a Composite Tractive Element with a Damaged Structure on its Stress State, Inżynieria Mineralna 1(1(51)) (2023) 147–154.
DOI: 10.29227/IM-2023-01-18
Google Scholar
[29]
R. Blazej, L. Jurdziak, A. Kirjanow-Blazej et al., Identification of damage development in the core of steel cord belts with the diagnostic system, Scientific Reports 11 (2021) 12349
DOI: 10.1038/s41598-021-91538-z
Google Scholar
[30]
X. Long, X. Li, M. Sun, Zh. Shen, Quantitative analysis of bond and splice strength of steel cord conveyor belt, Journal of Adhesion Science and Technology 34(3) (2020) 1-12
DOI: 10.1080/01694243.2020.1712771
Google Scholar
[31]
B. Wang, H. Ding, F. Teng, H. Liu, Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm, Journal of Shanghai Jiaotong University (Science), 30(2) (2023) 309-318
DOI: 10.1007/s12204-023-2651-6
Google Scholar
[32]
S.M. Frankl, M. Pletz, A. Wondracek, C. Schuecker, Assessing Failure in Steel Cable-Reinforced Rubber Belts Using Multi-Scale FEM Modelling, Journal of Composites Science 6(2) (2022) 34
DOI: 10.3390/jcs6020034
Google Scholar
[33]
G. Wheatley, S. Keipour, FEA of Conveyor Belt Splice Cord End Conditions, UPB Scientific Bulletin, Series D: Mechanical Engineering 83 (2021) 205–216.
Google Scholar
[34]
M. Pletz, S.M. Frankl, C. Schuecker, Efficient Finite Element Modeling of Steel Cables in Reinforced Rubber, Journal of Composites Science 6(6) (2022)
DOI: 10.3390/jcs6060152
Google Scholar
[35]
L. Jurdziak, R. Błazej, A. Kirjanów-Błazej, A. Rzeszowska, Trends in the Growth of Damage Extents in a Steel Conveyor Belt's Core, Minerals 14 (2024) 174
DOI: 10.3390/min14020174
Google Scholar
[36]
I. Belmas, D. Kolosov, O. Bilous, H. Tantsura, S. Onyshchenko, K. Antonova, Influence of Breakages of Reinforcing Elements of a Composite Orthotropic Stay Rope on Its Stress-Strain State, Key Engineering Materials 997 (2024) 107-118
DOI: 10.4028/p-E4cn8R
Google Scholar