[1]
A. Shabani, D. Jelagin, M.N. Partl, Advanced testing and characterization of low-temperature cracking in bitumen and mastic, Mater. Struct. 57 (2024) 24.
DOI: 10.1617/s11527-024-02294-1
Google Scholar
[2]
R. Ma, Y. Li, P. Cheng, X. Chen, A. Cheng, Low-temperature cracking and improvement methods for asphalt pavement in cold regions: A review, Buildings 14 (2024) 3802.
DOI: 10.3390/buildings14123802
Google Scholar
[3]
M. Guo, X. Yao, X. Du, Low temperature cracking behavior of asphalt binders and mixtures: A review, Journal of Road Engineering 3 (2023) 350–369.
DOI: 10.1016/j.jreng.2023.11.001
Google Scholar
[4]
S. Wang, H. Cao, T. Chen, W. Ke, W. Bo, Research on the Fracture Characteristics of Asphalt Mixtures in High Altitude and Cold Regions with Large Temperature Differences, Coatings 11 (2023) 618.
DOI: 10.3390/coatings13030618
Google Scholar
[5]
F. Otto, P. Liu, Z. Zhang, D. Wang, M. Oeser, Influence of temperature on the cracking behavior of asphalt base courses with structural weaknesses, Int. J. Transp. Sci. Technol. 7 (2018) 208–216.
DOI: 10.1016/j.ijtst.2018.04.002
Google Scholar
[6]
K. Primerano, J. Mirwald, A. Bhasin, Low-temperature characterization of bitumen and correlation to chemical properties, Constr. Build. Mater. 366 (2023) 130202.
DOI: 10.1016/j.conbuildmat.2022.130202
Google Scholar
[7]
X. Lu, P. Uhlback, H. Soenen, Investigation of bitumen low temperature properties using a dynamic shear rheometer with 4 mm parallel plates, Int. J. Pavement Res. Technol. 10 (2017) 15–22.
DOI: 10.1016/j.ijprt.2016.08.010
Google Scholar
[8]
S. Komaragiri, A. Filonzi, A. Masad, Using the dynamic shear rheometer for low-temperature grading of asphalt binders, J. Test. Eval. 50 (2022) 123–135.
DOI: 10.1520/jte20210277
Google Scholar
[9]
B. Teltayev, E. Amirbayev, B. Radovskiy, Evaluating the effect of polymer modification on the low-temperature rheological properties of asphalt binder, Polymers 14 (2022) 2548.
DOI: 10.3390/polym14132548
Google Scholar
[10]
M. Paliukaitė, A. Vaitkus, A. Zofka, Influence of bitumen chemical composition and ageing on pavement performance, Balt. J. Road Bridge Eng. 10 (2015) 97–104.
DOI: 10.3846/bjrbe.2015.12
Google Scholar
[11]
E. Remisova, D. Briliak, M. Holy, Evaluation of thermo-viscous properties of bitumen concerning the chemical composition, Materials 16 (2023) 1379.
DOI: 10.3390/ma16041379
Google Scholar
[12]
M. Honarmand, J. Tanzadeh, H.R. Jandaghi, Low temperature study on the behavior of reinforced bitumen in asphalt via addition of synthesized basalt, J. Test. Eval. 48 (2019) 20180413.
DOI: 10.1520/jte20180413
Google Scholar
[13]
X. Lu, U. Isacsson, J. Ekblad, Influence of polymer modification on low temperature behaviour of bituminous binders and mixtures, Mater. Struct. 36 (2003) 652–656.
DOI: 10.1007/bf02479497
Google Scholar
[14]
A.L. Belc, I.O. Pop, F. Belc, Influence of warm mix additives on the low-temperature behavior of bitumen using the Bending Beam Rheometer (BBR), Constr. Build. Mater. 273 (2021) 121682.
DOI: 10.1016/j.conbuildmat.2020.121682
Google Scholar
[15]
O.V. Laukkanen, H.H. Winter, H. Soenen, Rheological analysis of the low-temperature dynamics of bitumens, Annu. Trans. Nord. Rheol. Soc. 23 (2015) 119–124.
Google Scholar
[16]
T. Sigwarth, J. Büchner, M.P. Wistuba, Requirements for the low-temperature cracking resistance of asphalt binders, Road Mater. Pavement Des. 26 (2025) 456–470.
DOI: 10.1080/14680629.2025.2482844
Google Scholar
[17]
G. Xu, Y. Zhou, Y. Zhu, Effect of weather aging on viscoelasticity and fatigue performance of asphalt mastic, Materials 14 (2021) 6163.
DOI: 10.3390/ma14206163
Google Scholar
[18]
Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci. 2009;145(1-2):42-82.
DOI: 10.1016/j.cis.2008.08.011
Google Scholar
[19]
Gokhman L.M. Theoretical principles of the bitumen structure and the role of asphaltenes (based on rheological methods). Chapter 8 in "Asphaltenes and Asphalts, Vol. 2, Developments in Petroleum Science, 40B." Edited by T.F. Yen and G.V. Chilingarian. Amsterdam, Elsevier. 2000: 173–227.
DOI: 10.1016/s0376-7361(09)70279-1
Google Scholar
[20]
Ilin YV. Justification and development of a non-destructive deformation method for assessing the frost resistance of asphalt concrete [dissertation]. Kharkiv; 2021. 172 p.
Google Scholar
[21]
Marasteanu M, Ghosh D, Cannone Falchetto A, Turos M. Testing protocol to obtain failure properties of asphalt binders at low temperature using creep compliance and stress-controlled strength test. Road Mater Pavement Des. 2017.
DOI: 10.1080/14680629.2017.1304246
Google Scholar
[22]
AASHTO T 315, Standard method for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR), American Association of State Highway and Transportation Officials, Washington, D.C., 2020.
DOI: 10.1520/d7175-05
Google Scholar
[23]
EN 14770, Bitumen and bituminous binders — Determination of complex shear modulus and phase angle using a dynamic shear rheometer (DSR), European Committee for Standardization, Brussels, 2012.
DOI: 10.3403/30247874
Google Scholar
[24]
M. Ravnikar Turk, M. Tušar, Low Temperature Properties of Paving Grade Bitumen, in: CETRA 2018: Road and Rail Infrastructure V, Proceedings of the 5th International Conference on Road and Rail Infrastructure, Zadar, Croatia, May 17-19, 2018.
DOI: 10.5592/co/cetra.2018.876
Google Scholar
[25]
C. Sui, M. Farrar, W.H. Tuminello, T. Turner, New Technique for Measuring Low Temperature Properties of Asphalt Binders with Small Amounts of Material, Transportation Research Record: Journal of the Transportation Research Board 2179 (2010) 40-48.
DOI: 10.3141/2179-03
Google Scholar