[1]
H. Wu, J. Zeng, Q. Zhang, C. Lin, F. Liu, X. Guo, Y. Chi, Y. Zhang, X. Chen, Evaluation of Laser Shock Processing Quality of a Superalloy Using a Multi-Criteria Decision Making Methodology, J. of Materi Eng and Perform. 33 (2024) 3299-3308.
DOI: 10.1007/s11665-023-08236-2
Google Scholar
[2]
G. Oliveira, R. Cardoso, R. Júnior, T. Doca, J. Araújo, On the generalization capability of artificial neural networks used to estimate fretting fatigue life, Tribol. Int.. 192 (2024) 109222.
DOI: 10.1016/j.triboint.2023.109222
Google Scholar
[3]
N. Singh, U. Batra, K. Kumar, N. Ahuja, A. Mahapatro, Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation, Bioact. Mater.. 19 (2023) 717-757.
DOI: 10.1016/j.bioactmat.2022.05.009
Google Scholar
[4]
E. Amar, V. Popov, V. Sharma, S.A. Batat, D. Halperin, N. Eliaz, Response surface methodology (RSM) approach for optimizing the processing parameters of 316L SS in directed energy deposition, Materials. 16 (2023) 7253.
DOI: 10.3390/ma16237253
Google Scholar
[5]
L. Bertini, C. Santus, Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling, Int. J. Fatigue. 81 (2015) 179-190.
DOI: 10.1016/j.ijfatigue.2015.08.007
Google Scholar
[6]
P.S. Prevéy, N. Jayaraman, R.A. Ravindranath, M. Shepard, Mitigation of fretting fatigue damage in blade and disk pressure faces with low plasticity burnishing, J. Eng. Gas Turbines Power.132 (2010) 082105.
DOI: 10.1115/1.2943154
Google Scholar
[7]
Q. Yang, W. Zhou, Y. Zhong, X. Zhang, X. Fu, G. Chen, Z. Li, Effect of shot-peening on the fretting wear and crack initiation behavior of Ti-6Al-4V dovetail joint specimens, Int. J. Fatigue. 107 (2018) 83-95.
DOI: 10.1016/j.ijfatigue.2017.10.020
Google Scholar
[8]
X. Qu, Y. Zhang, J. Liu, Numerical Simulation on Residual Stress Field of Flat-Topped Laser Oblique Shocking of Ni-Based Alloy GH4169, Ad. Mater. Sci. Eng.. (2020) 8824824.
DOI: 10.1155/2020/8824824
Google Scholar
[9]
J. Wu, J. Zhao, H. Qiao, X. Hu, Y. Yang, The new technologies developed from laser shock processing, Materials. 13 (2020) 1453.
DOI: 10.3390/ma13061453
Google Scholar
[10]
J. Wu, J. Zhao, H. Qiao, Y. Zhang, X. Hu, Y. Yu, Evaluating methods for quality of laser shock processing, Optik. 200 (2020) 162940.
DOI: 10.1016/j.ijleo.2019.162940
Google Scholar
[11]
J. Wu, X. Liu, J. Zhao, H. Qiao, Y. Zhang, H. Zhang, The online monitoring method research of laser shock processing based on plasma acoustic wave signal energy, Optik. 183 (2019) 1151-1159.
DOI: 10.1016/j.ijleo.2019.01.092
Google Scholar
[12]
Y.F. Xiang, R.L. Mei, S.P. Wang, F. Azad, L.Z. Zhao, S.C. Su, Numerical investigation of the effect of laser shock peening parameters on the residual stress and deformation response of 7075 aluminum alloy, Optik. 243 (2021) 167446.
DOI: 10.1016/j.ijleo.2021.167446
Google Scholar
[13]
W. Deng, H. Lu, K. Luo, Y. Gu, J. Lu, Numerical study of micro-dimple depth and stress distribution induced by laser shock waves in visco-elasto-plastic materials, Eng. Fract. Mech.. 307 (2024) 110314.
DOI: 10.1016/j.engfracmech.2024.110314
Google Scholar
[14]
K. Ding, L. Ye, Simulation of multiple laser shock peening of a 35CD4 steel alloy, J. Mater. Process. Tech.. 178 (2006) 162-169.
DOI: 10.1016/j.jmatprotec.2006.03.170
Google Scholar
[15]
R. Voothaluru, C.R. Liu, G.J. Cheng, Finite element analysis of the variation in residual stress distribution in laser shock peening of steels, J. Manuf. Sci. Eng. 134 (2012) 061010.
DOI: 10.1115/1.4007780
Google Scholar
[16]
V. Anoop, Y. Hu, R.V. Grandhi, Differences in plasticity due to curvature in laser peened components, Surf. Coat. Tech.. 235 (2013) 648-656.
DOI: 10.1016/j.surfcoat.2013.08.043
Google Scholar
[17]
V. Anoop, K. Gobal, R.V. Grandhi, A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components, Int. J. Fatigue. 70 (2015) 395-405.
DOI: 10.1016/j.ijfatigue.2014.07.008
Google Scholar
[18]
W. Braisted, R. Brockman, Finite element simulation of laser shock peening, Int. J. Fatigue. 21 (1999) 719-724.
DOI: 10.1016/s0142-1123(99)00035-3
Google Scholar
[19]
Y. Hu, R.V. Grandhi, Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology, Surf. Coat. Tech.. 15 (2012) 3374-3385.
DOI: 10.1016/j.surfcoat.2012.01.050
Google Scholar
[20]
Y. Hu, Z. Yao, J. Hu, 3-D FEM simulation of laser shock processing, Surf. Coat. Tech.. 201 (2006) 1426-1435.
Google Scholar
[21]
Y. Zhang, L. Zhang, J. Zhou, Oblique angle laser shock experiment and theoretic analyse, Chinese Journal of Lasers. 32 (2005) 1437-1440.
Google Scholar
[22]
L. Zhang, L. Sun, X. Ma, Research on the deformation characteristic of the sheet by oblique angle laser shock, Laser Phys.. 23 (2013) 036001.
DOI: 10.1088/1054-660x/23/3/036001
Google Scholar
[23]
H. Qiao, B. Sun, J. Zhao, Y. Lu, Z. Cao, Numerical modeling of residual stress field for linear polarized laser oblique shock peening, Optik. 186 (2019) 52-62.
DOI: 10.1016/j.ijleo.2019.04.083
Google Scholar
[24]
R. Zhu, Y. Zhang, G. Sun, S. Zhang, P Li, Finite Element Analysis of Residual Stress Induced by Multiple Laser Shock Peening with Square Spots, Inter. J. of Peen. Sci. Tech.. 1 (2018) 99-118.
Google Scholar
[25]
J. Wu, J. Zhao, H. Qiao, Y. Lu, B. Sun, X. Hu, Y. Yang, A method to determine the material constitutive model parameters of FGH4095 alloy treated by laser shock processing, Applied Surface Science Advances. 1 (2020) 100029.
DOI: 10.1016/j.apsadv.2020.100029
Google Scholar