Preparation and Electrical Properties of (100) Preferred (Ba,Sr)TiO3 Bilayer Thin Films Derived from Pulse Laser Deposition Method

Article Preview

Abstract:

Bilayer Ba0.6Sr0.4TiO3 - Ba0.4Sr0.6TiO3 and Ba0.4Sr0.6TiO3 - Ba0.6Sr0.4TiO3 thin films were deposited on the LaNiO3-buffered Pt/Ti/SiO2/Si substrates using pulse laser deposition method. A (100)preferred orientation was obtained. The structure was characterized using x-ray diffraction (XRD) and Raman spectroscopy. The leakage current, and dielectric permittivity versus temperature were characterized. Results indicated that the (100) preferred bilayer structure had less leakage current and smaller loss tangent, which was in favor of enhancing the quality of thin film used as microwave dielectrics.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

849-852

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Landolt-Bornstein: Numerical Data and functional relationships in science and technology, New Series, Group III, Vol. 16, Ferroelectric and Related substances, Subvolume A: Oxides; p.75, (1969).

Google Scholar

[2] A. Outzourhit, J. U. Trefny, T. Kito, B. Yarar, A. Naziripour and A. M. Hermann: Thin Solid Films, Vol. 259 (1995), p.218.

DOI: 10.1016/0040-6090(94)06451-2

Google Scholar

[3] C. Basceri, S. K. Streiffer, A. I. Kingon and R. Waser: J. Appl. Phys. Vol. 82 (1997), p.2497.

Google Scholar

[4] P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York and J. S. Speck: Appl. Phys. Lett. Vol. 75 (1999), p.3186.

Google Scholar

[5] C. L. Chen, H. H. Feng, Z. Zhang, A. Brazdeikis, Z. J. Huang, W. K. Chu, C. W. Chu, F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky and Y. Liou: Appl. Phys. Lett. Vol. 75 (1999), p.412.

DOI: 10.1063/1.124392

Google Scholar

[6] P. C. Joshi and M. W. Cole: Appl. Phys. Lett. Vol. 77 (2000), p.289.

Google Scholar

[7] A.D. Li, C.Z. Ge, P. Lu, D. Wu, S.B. Xiong, and N.B. Ming: Appl. Phys. Lett. Vol. 70 (1997), p.1616.

Google Scholar

[8] K. H. Yoon, J. H. Sohn, B. D. Lee and D. H. Kang: Appl. Phys. Lett. Vol. 81 (2002), p.5012.

Google Scholar

[9] T. B. Wu, C. M. Wu and M. L. Chen: Appl. Phys. Lett. Vol. 69 (1996), p.3659.

Google Scholar

[10] P. C. Joshi and M. W. Cole: Appl. Phys. Lett. Vol. 77 (2000), p.289.

Google Scholar

[11] K. H. Ahn, S. Baik, and S. S. Kim: J. Appl. Phys. Vol. 92 (2002), p.265.

Google Scholar

[12] S. G. Lu, X. H. Zhu, C. L. Mak, K. H. Wong, H. L. W. Chan, and C. L. Choy: Appl. Phys. Lett. Vol. 82 (2003), p.2877.

Google Scholar

[13] C. Hubert and J. Levy: Appl. Phys. Lett. Vol. 73 (1998), p.3229.

Google Scholar

[14] T. Noma, S. Wada, M. Yano and T. Suzuki: J. Appl. Phys. Vol. 80 (1996), p.5223.

Google Scholar

[15] T. P. C. Juan, S. M. Chen and J. Y. M. Lee: J. Appl. Phys. Vol. 95 (2004), p.3120.

Google Scholar

[16] J. F. Scott: Ferroelectric Rev. Vol. 1 (1998).

Google Scholar