Key Engineering Materials
Vol. 312
Vol. 312
Key Engineering Materials
Vols. 309-311
Vols. 309-311
Key Engineering Materials
Vols. 306-308
Vols. 306-308
Key Engineering Materials
Vols. 304-305
Vols. 304-305
Key Engineering Materials
Vols. 302-303
Vols. 302-303
Key Engineering Materials
Vol. 301
Vol. 301
Key Engineering Materials
Vols. 297-300
Vols. 297-300
Key Engineering Materials
Vols. 295-296
Vols. 295-296
Key Engineering Materials
Vols. 293-294
Vols. 293-294
Key Engineering Materials
Vols. 291-292
Vols. 291-292
Key Engineering Materials
Vol. 290
Vol. 290
Key Engineering Materials
Vols. 288-289
Vols. 288-289
Key Engineering Materials
Vol. 287
Vol. 287
Key Engineering Materials Vols. 297-300
Paper Title Page
Abstract: When studying 3D fatigue crack growth behaviors of materials, to determine the crack opening stress intensity factor ratio is the key issue. Elastic-plastic Fracture Mechanics theory and physical mechanism of cracks’ closure phenomena caused by plastic deformation are employed here. A model for determining the crack opening stress intensity factor ratio under tri-axial stress state is presented. The comparison of the present model with available data and models shows quite good agreement.
1572
Abstract: In this study, the dynamic behaviors of cracks under dynamic biaxial stress are investigated. We conduct dynamic loading fracture experiments on the aluminum (2024-T3) and the magnesium alloy (AZ31B-O) under equitable biaxial stress with a hydraulic high-speed biaxial experimental machine. The processed specimens are cruciform with a crack. Different kinds of cracks are defined by their crack angles. We analyze the results by the caustic method. We obtained the stress
intensity factor and the fracture toughness value in the neighborhood of the crack tip under dynamic biaxial stress. We analyzed the obtained data, and then, we compared results.
1579
Abstract: Horizontal vibration has critical influence upon elevators’ ride quality. Based on the
wave theory of one-dimensional string vibration, a horizontal vibration wave model is built to simulate the dynamic performance of a high speed elevator system. Through coordinate transformation, Galerkin’s method is used to discretize the governing partial differential equations into a dumped-mass system, which can be solved effectively with classic methods. Numerical results show that the horizontal vibration behaviors are closely interconnected with the location, velocity and acceleration of elevator cab.
1585
Abstract: The need for research on fatigue behavior of mechanical element under mixed-mode
loading has been increasing as the user environment today becomes more and more complicated. However there haven’t been enough investigations on behavior in shear loads comparing to those under tensile loading conditions. So, for this paper, we investigated the characteristics and properties of initiation and propagation behavior for fatigue crack observed for different shapes of the initial crack and magnitudes of load in the modified compact tension shear (CTS) specimen subjected to mode II load. In the low-load condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack surface grew to a main crack. In the high-load condition meanwhile, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation was retarded in the initial propagation region due to the decrease in crack driving force and friction on the crack surface. In both cases, however, fatigue cracks grew in tensile mode. The propagation direction of fatigue crack under mode II loading was approximately at a 70 degree angle from the initial crack, regardless of its shape and load magnitude.
1592
Abstract: In order to clarify the effect of anisotropy on local deformation and the stress intensity factors in the vicinity of the crack tip under complicated stress states, biaxial loading tests were carried out on isotropic (Photoelastic sheet: PSM-1, Measurements Group, Inc) and anisotropic (LEXAN 9030, General Electric Company) polycarbonate materials. The biaxial dynamic loading device, which was developed by the authors, was fully utilized in the experiments. We carried out the experiments using isotropic and anisotropic specimens with a pre-processed 0°, 15°, 30°, 45°, 60°, 75° or 90° crack angle. We applied the equal biaxial stress, that is, the loads for both the Y- and X-axis as 0N : 0N-3920N : 3920N (1 : 1). We determined the stress intensity factors of specimens using both photoelasticity and caustics method. The results of the experiments were compared. As a result, when the materials with anisotropic property are used as machine or structural members, it is important to consider the extrusion direction of the material in their design.
1598
Abstract: The effect of assumption of plane state of stress on the predictability of experimental
results observed during the mode II stable crack growth (SCG) through 8 mm thick compact tension specimens (CTS) of a workhardening aluminum alloy (D16AT) has been studied. Experimental results include load-sliding displacement diagram, extent of SCG, crack front geometry and fracture surface fractographs. The experimental results show that the crack extends in its own plane, the fracture surface is flat, smooth and free of any shear lip. The crack front geometry, which is straight initially, remains mostly so throughout the SCG. Theoretical investigations have been done using an elastic-plastic finite element scheme and the COA/COD criterion as the criterion governing the growth. Finite element results, assuming plane stress and plane strain conditions separately, on the load-sliding displacement diagrams, J-resistance curve, plastic zones and variation of equivalent stress and strain along the crack-line ahead of the crack tip are also presented. The resistance curve is a straight-line and the magnitudes of equivalent stress and strain increases as the crack extension proceeds. In general, the predictions based on the assumption of plane state of stress are closer to the experimental results.
1604
Abstract: Recently, the organic polymer films attract attention as promising dielectric films which reduce environmental burdens and inhibit RC-delays. It is very important to understand its mechanical properties. In the previous studies, we could evaluate its reliability by measuring the interfacial energy release rates during the peeling under various conditions. So in this study, we applied this method to several types of specimens. Then, the phase angle effect on interfacial toughness and its contributions were considered by analyzing the results. In addition, we derived fracture criterion in order to feed back to manufacturing process. SiLK (trademark of the Dow Chemical Company) was selected as dielectric material. We prepared two types of specimens. One consists of spin-coated SiLK layer sandwiched between Si substrates using adhesion bond (adhesion bond specimen). The
other is made by the following process; at first, two Si substrates with spin-coated SiLK were swelled in solvent. Then, their SiLK faces were pressured and heat cured in oven (thermal pressure bond specimen). Four points bending and DCB tests were performed. Crack path was identified using SEM observation and ESCA analysis in addition to the mechanical test. From the results under different mode mixty condition, the existence of phase angle effect on facial fracture toughness was studied out. Its primary factors were due to bridging of SiLK layer and plastic deformation of SiLK layer and/or adhesion bond layer. Moreover, we evaluated the fracture criteria under several conditions using an ellipse approximation.
1611
Abstract: The fracture behavior of brittle materials under biaxial plane stress has been investigated by means of numerical simulation method with software MFPA2D (Material Failure Process Analysis). The aims of this study are to clarify the fracture dependence of brittle material on biaxial plane stress state. The observation of crack initiation and fracture behavior reveals that the biaxial stresses have strong influence on the fracture properties of glass. Thus, the fracture criterion by the stress intensity factor was questioned for the biaxial plane stress issues. It is confirmed that the tensile stress parallel to the crack plane is an important factor affecting crack arrest, while the compressive stress parallel to the crack plane contributes to crack opening.
1617
Abstract: Fatigue crack initiation and propagation behavior around a hole subjected to various biaxial fatigue loading modes has been investigated considering the effect of the biaxial static stress. Two different biaxial loading systems, i.e. cyclic tensile loading with static torsional load and cyclic torsional loading with static tensile load, were employed to thin-walled tubular specimens with a circular notch. Variation of the initiaiton and propagation directions of the crack around a hole under these loading ssytems was examined. The initiation directions were observed using replication technique and the crack propagation was measured by two crack gages mounted near the notch. It was found that the biaxial static stress superimposed on the cyclic tensile or torsional loading tests has no influence on the initiation and propagation directions of the cracks around a hole. The fatigue crack initiation and propagation direction under cyclic loading with biaxial static load can be very well explained by the maximum of tangential stress range, Dsqq,max. Furthermore, it was shown that the fatigue crack growth rates under biaixial faigue loading becomes higher with increment of biaxial static load.
1623