Diffusion Behavior at the Interface of (Ba,Sr)TiO3(BST)/Electrode/Buffer Layer/Si Epitaxial Multi-Layer Thin Film

Article Preview

Abstract:

Diffusion behavior at the interface of (001)-epitaxially grown (Ba,Sr)TiO3(BST)/electrode/buffer layer/Si thin films was examined by use of secondary ion-microprobe mass spectrometer (SIMS) and transmission electron microscope (TEM) attached with energy dispersive X-ray fluorescence spectrometer (EDX). As the (001)-epitaxially grown film, following three kinds of structure was grown; (1)BST/(La,Sr)CoO3(LSCO)/CeO2/yttria-stabilized zirconia(YSZ)/Si, (2)BST/PLD-deposited Pt/SrTiO3(ST)/LSCO/CeO2/YSZ/Si and (3)BST/sputter-deposited Pt/ST/LSCO/CeO2/YSZ/Si. For sample (1), uphill diffusion of Sr and Ti was observed at the interface of YSZ and SiO2. Diffusion of Co into CeO2 layer was also detected. These tendencies of diffusion were also observed for samples (2) and (3). In addition to these tendencies, apparent uphill diffusion of Co at the Pt layer was observed for sample (2). However, this diffusion was not observed for sample (3). It was also observed that oxygen diffusion was prevented for sputter-deposited Pt. On the other hand, oxygen diffusion was observed for PLD-deposited Pt.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-260

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. R. Carroll, J. M. pond, D. B. Chrisey, J. S. Horwitz and R. E. Leuchtner, Appl. Phys. Lett., 62, 1292 (1993).

Google Scholar

[2] C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, S. I. Lee and M. Y. Lee, Appl. Phys. Lett., 67, 2819 (1995).

Google Scholar

[3] M. Izuha, K. Abe, M. Koike, S. Takeno and N. Fukushima, Appl. Phys. Lett., 70, 1405 (1997).

DOI: 10.1063/1.118590

Google Scholar

[4] R. Tsu, H. Y. Liu, W. Y. Hsu, S. Summerfelt, K. Aoki and B. Gnade, Mater. Res. Symp. Proc., 361, 275 (1995).

Google Scholar

[5] S. Hyun, J. H. Lee, S. S. Kim, K. Char, S. J. Park, J. Sok and E. H. Lee, Appl. Phys. Lett., 77, 3084 (2000).

Google Scholar

[6] C. L. Chen, H. H. Feng, Z. Zhang, A. Brazdeikis, Z. J. Huang, W. K. Chu, F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky and Y. Liou, Appl. Phys. Lett., 75, 412 (1999).

DOI: 10.1063/1.124392

Google Scholar

[7] A. Higuchi, N. Wakiya, K. Shinozaki, N. Mizutani, Y. Nishi, N. Shibata and K. Fukunaga, Proc. 20th Ceramic research Conference of Kanto Branch, 14 (2004).

Google Scholar

[8] M. Suzuki and T. Ami, Mater. Sci. and Eng., B41, 166 (1996).

Google Scholar

[9] N. Wakiya, K. Shinozaki and N. Mizutani, Thin Solid Films, 384, 189 (2001).

Google Scholar

[10] T. Yamada, N. Wakiya, K. Shinozaki and N. Mizutani, Appl. Phys. Lett., 83, 4815 (2003).

Google Scholar

[11] H. Tsuji, M. Furuhashi, M. Tachi and K. Taniguchi, Jpn. J. Appl. Phys., 43, 873 (2004).

Google Scholar

[12] R. Habu, I. Yunoki, T. Saito and A. Tomiura, Jpn. J. Appl. Phys., 32, 1740 (1993). Fig. 4. SIMS profiles of (a)sample (2) and (b)sample (3) after annealing in 18O2.

Google Scholar