Chemical Solution Deposition of PZT/Oxide Electrode Thin Film Capacitors with Preferred Orientation on Si Substrate

Article Preview

Abstract:

This paper describes the deposition of PZT/oxide electrode thin film capacitors on Si(100) substrate with a CSD (Chemical Solution Deposition). Highly (100)&(001)-oriented SRO/LNO electrode films with a perovskite structure were obtained by the annealing at 700 °C from a precursor solution of Sr and RuCl3·2H2O for SRO and from a precursor solution of La(NO3)3 and Ni(CH3COO)2 for LNO. In addition, highly (100)&(001)-oriented PZT/oxide electrode capacitor were deposited on SRO/LNO/Si substrate by annealing at 650 °C, showing a good ferroelectricity of Pr=22μC/cm2 and Ec=55 kV/cm. In addition, the resultant PZT/oxide electrode thin film capacitors exhibited no fatigue up to 108 switching cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-272

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Y. Chen, and C.L. Sun, J. Appl. Phys. 90 (2001) 2970-2974.

Google Scholar

[2] T. Mihara, H. Watanabe and C.A.P. Araujo, Jpn. J. Appl. Phys. 33 (1994) 5281-5286.

Google Scholar

[3] H.M. Duiker, P.D. Beale, J.F. Scott, C.A. P Araujo, B.M. Melnick, J.D. Cuchiaro and L.D. McMillian, J. Appl. Phys. 68 (1990) 5783-5791.

Google Scholar

[4] K. Aoki, I. Murayama, Y. Fukuda and A. Nishimura, Jpn. J. Appl. Phys. 36 (1997) L690-L692.

Google Scholar

[5] Y.K. Wang, T.Y. Tseng and P. Lin, Appl. Phys. Lett. 80 (2002) 3790-3792.

Google Scholar

[6] T. Morimoto, O. Hidaka, K. Yamakawa, O. Arisumi, H. Kanaya, T. Iwamoto, Y. Kumura, I. Kunishima and S. Tanaka, Jpn. J. Appl. Phys. 39 (2000) 2110-2113.

DOI: 10.1143/jjap.39.2110

Google Scholar

[7] C. Guerrero, J. Roldan, C. Ferrater, M.V. Garcia-Cuenca, F. Sanchez, M. Varela, Solid State Electron. 45 (2001) 1433-1440.

Google Scholar

[8] R. Ramesh, W.K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon, V.G. Keramidas, D.K. Fork, J. Lee and A. Safari, Appl. Phys. Lett. 61 (1992) 1537-1539.

DOI: 10.1063/1.107488

Google Scholar

[9] J. Lee, L. Johnson, A. Safari, R. Ramesh, T. Sands, H. Gilchrist and V.G. Keramidas, Appl. Phys. Lett. 63 (1993) 27-29.

Google Scholar

[10] T. Nakamura, Y. Nakao, A. Kamisawa and H. Yakasu, Jpn. J. Appl. Phys. 33 (1994) 5207-5210.

Google Scholar

[11] S.D. Bernstein, T.Y. Wong, Y. Kisler and R.W. Tustison, J. Mater. Res. 8 (1993) 12-13.

Google Scholar

[12] B.G. Chae, Y.S. Yang, S.H. Lee, M.S. Jang, S.J. Lee, S.H. Kim, W.S. Beak and S.C. Kwon, Thin Solid Films 410 (2002) 107-113.

Google Scholar

[13] R. Dat, D.J. Lichtenwalner, O. Auciello and A.I. Kingon, Appl. Phys. Lett. 64 (1994) 2673-2675.

Google Scholar

[14] R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen and D.K. Fork, Appl. Phys. Lett. 63 (1993) 3592-3594.

DOI: 10.1063/1.110106

Google Scholar

[15] H. Suzuki, Y. Miwa, H. Miyazaki, Ceramics International, 30.

Google Scholar

[7] (2004)1357-1360.

Google Scholar

[16] Hisao Suzuki, Mohamed Baijuri Othman, Kenji Murakami, Shoji Kaneko and Takashi Hayashi, Jpn. J. Appl. Phys., 35 pp.4896-4899 (1996).

Google Scholar

[17] H. Miyazaki, T. Goto, Y. Miwa T. Ohno, H. Suzuki, T. Ota and M. Takahashi, J. Euro. Ceram. Soc. 24 (2004) pp.1005-1008.

Google Scholar