Key Issues in Measuring the Velocities of Nanoparticles in Nanofluids

Article Preview

Abstract:

Our recent work [1] theoretically revealed that speckles can be formed when nanofluids containing a modest volume fraction of nanoparticles are illuminated by a monochromatic laser beam. This paper focuses on the key issues, including the experimental setup, the particle volume fraction of the nanofluid, the flow velocity of the nanofluid and the diameter of the pipe, in measuring the velocities of nanoparticles in nanofluids with laser speckle velocimetry (LSV). First an experimental setup is established according to the optical characteristics of nanoparticle and the measuring principles of particle image velocimetry (PIV) and LSV. Then a conclusion is made from the experimental results that clear speckle patterns can be formed when the particle volume fraction is between 0.0005% and 0.002% is able to form. Finally, in order to make it applicable to utilize LSV to measure the velocities of nanoparticles in nanofluids that flow in pipe, nanofluids can not flow too fast and the diameter of the pipe should not be too small.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 364-366)

Pages:

1111-1116

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ming Qian, Jun Liu, Ming-sheng Yan, Zhong-hua Shen, Jian Lu, Xiao-wu Ni, Qiang Li and Yimin Xuan: Optics Express Vol. 14 (2006), p.7559.

Google Scholar

[2] U.S. Choi: ASME. FED Vol. 231 (1995), p.99.

Google Scholar

[3] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson: Appl. Phys. Lett. Vol. 78 (2001), p.718.

Google Scholar

[4] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke: Appl. Phys. Lett. Vol. 79 (2001), p.2252.

Google Scholar

[5] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel: J. Heat Transfer Vol. 125 (2003), p.567.

Google Scholar

[6] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundarajan, T. Pradeep and S. K. Das: Phys. Rev. Lett. Vol. 93 (2004), 144301.

Google Scholar

[7] S. P. Jang and S. U. S. Choi: Appl. Phys. Lett. Vol. 84(2004), p.4316.

Google Scholar

[8] J. Koo and C. Kleinstreuer: J. Nanopart. Res. Vol. 6 (2004), p.577.

Google Scholar

[9] R. Prasher, P. Bhattacharya and P. E. Phelan: Phys. Rev. Lett. Vol. 94 (2005), 025901.

Google Scholar

[10] R. Prasher, P. Bhattacharya and P. E. Phelan: J. Heat Transfer Vol. 128 (2006), p.588.

Google Scholar

[11] C. H. Chon and K. D. Kihm: Appl. Phys. Lett. Vol. 87 (2005), 153107.

Google Scholar

[12] C. H. Chon and K. D. Kihm: J. Heat Transfer Vol. 127 (2005), p.810.

Google Scholar

[13] Y. Xuan and Q. Li: J. Appl. Phys. Vol. 100 (2006), 043507.

Google Scholar

[14] H. W. Tang, Y. Yang and Y. R. Xu: Proc. SPIE Vol. 4221 (2000), p.361.

Google Scholar

[15] L. GmbH and A. V. Ring: Proc. SPIE Vol. 4948 (2003), p.671.

Google Scholar

[16] M. Kowalczyk: Proc. SPIE Vol. 2729 (1996), p.139.

Google Scholar

[17] M. Kowalczyk: Proc. SPIE Vol. 2729 (1996), p.146.

Google Scholar

[18] R. J. Adrian and C. S. Yao: Appl. Opt. Vol. 24 (1985), p.44.

Google Scholar

[19] Cheng Kai-jia et al, in: Flow visualization techniques (in Chinese), Published by Defense Industry publishing company. (2002).

Google Scholar

[20] Victor L. Streeter, E. Benjamin Wylie and Keith W. Bedford, in: Fluid Mechanics, Published by McGraw-Hill companies, Inc. (1998).

Google Scholar