Key Issues in Measuring the Velocities of Nanoparticles in Nanofluids

Abstract:

Article Preview

Our recent work [1] theoretically revealed that speckles can be formed when nanofluids containing a modest volume fraction of nanoparticles are illuminated by a monochromatic laser beam. This paper focuses on the key issues, including the experimental setup, the particle volume fraction of the nanofluid, the flow velocity of the nanofluid and the diameter of the pipe, in measuring the velocities of nanoparticles in nanofluids with laser speckle velocimetry (LSV). First an experimental setup is established according to the optical characteristics of nanoparticle and the measuring principles of particle image velocimetry (PIV) and LSV. Then a conclusion is made from the experimental results that clear speckle patterns can be formed when the particle volume fraction is between 0.0005% and 0.002% is able to form. Finally, in order to make it applicable to utilize LSV to measure the velocities of nanoparticles in nanofluids that flow in pipe, nanofluids can not flow too fast and the diameter of the pipe should not be too small.

Info:

Periodical:

Key Engineering Materials (Volumes 364-366)

Edited by:

Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO

Pages:

1111-1116

DOI:

10.4028/www.scientific.net/KEM.364-366.1111

Citation:

M. Qian et al., "Key Issues in Measuring the Velocities of Nanoparticles in Nanofluids ", Key Engineering Materials, Vols. 364-366, pp. 1111-1116, 2008

Online since:

December 2007

Export:

Price:

$38.00

[1] Ming Qian, Jun Liu, Ming-sheng Yan, Zhong-hua Shen, Jian Lu, Xiao-wu Ni, Qiang Li and Yimin Xuan: Optics Express Vol. 14 (2006), p.7559.

DOI: 10.1364/oe.14.007559

[2] U.S. Choi: ASME. FED Vol. 231 (1995), p.99.

[3] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson: Appl. Phys. Lett. Vol. 78 (2001), p.718.

[4] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke: Appl. Phys. Lett. Vol. 79 (2001), p.2252.

[5] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel: J. Heat Transfer Vol. 125 (2003), p.567.

[6] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundarajan, T. Pradeep and S. K. Das: Phys. Rev. Lett. Vol. 93 (2004), 144301.

[7] S. P. Jang and S. U. S. Choi: Appl. Phys. Lett. Vol. 84(2004), p.4316.

[8] J. Koo and C. Kleinstreuer: J. Nanopart. Res. Vol. 6 (2004), p.577.

[9] R. Prasher, P. Bhattacharya and P. E. Phelan: Phys. Rev. Lett. Vol. 94 (2005), 025901.

[10] R. Prasher, P. Bhattacharya and P. E. Phelan: J. Heat Transfer Vol. 128 (2006), p.588.

[11] C. H. Chon and K. D. Kihm: Appl. Phys. Lett. Vol. 87 (2005), 153107.

[12] C. H. Chon and K. D. Kihm: J. Heat Transfer Vol. 127 (2005), p.810.

[13] Y. Xuan and Q. Li: J. Appl. Phys. Vol. 100 (2006), 043507.

[14] H. W. Tang, Y. Yang and Y. R. Xu: Proc. SPIE Vol. 4221 (2000), p.361.

[15] L. GmbH and A. V. Ring: Proc. SPIE Vol. 4948 (2003), p.671.

[16] M. Kowalczyk: Proc. SPIE Vol. 2729 (1996), p.139.

[17] M. Kowalczyk: Proc. SPIE Vol. 2729 (1996), p.146.

[18] R. J. Adrian and C. S. Yao: Appl. Opt. Vol. 24 (1985), p.44.

[19] Cheng Kai-jia et al, in: Flow visualization techniques (in Chinese), Published by Defense Industry publishing company. (2002).

[20] Victor L. Streeter, E. Benjamin Wylie and Keith W. Bedford, in: Fluid Mechanics, Published by McGraw-Hill companies, Inc. (1998).

In order to see related information, you need to Login.