Key Engineering Materials
Vols. 426-427
Vols. 426-427
Key Engineering Materials
Vol. 425
Vol. 425
Key Engineering Materials
Vol. 424
Vol. 424
Key Engineering Materials
Vol. 423
Vol. 423
Key Engineering Materials
Vols. 421-422
Vols. 421-422
Key Engineering Materials
Vols. 419-420
Vols. 419-420
Key Engineering Materials
Vols. 417-418
Vols. 417-418
Key Engineering Materials
Vol. 416
Vol. 416
Key Engineering Materials
Vol. 415
Vol. 415
Key Engineering Materials
Vols. 413-414
Vols. 413-414
Key Engineering Materials
Vol. 412
Vol. 412
Key Engineering Materials
Vols. 410-411
Vols. 410-411
Key Engineering Materials
Vol. 409
Vol. 409
Key Engineering Materials Vols. 417-418
Paper Title Page
Abstract: Plasticity Induced Crack Closure (PICC) is an important fatigue phenomenon affecting crack growth under cyclic loading, which makes important to consider it in the design of components. In this paper a parametric study that correlates elastic-plastic material parameters with plasticity induced crack closure (PICC) is presented. Yield stress and hardening coefficient were selected as the material parameters of interest and a sensitivity analysis was developed. The influence of the different parameters on PICC is explained based on the analysis of crack tip micromechanisms for plastic deformation.
113
Modelling of Damage Development and Strain Ratchetting Using a Viscoplastic Constitutive Formulation
Abstract: Simulation of both damage development and strain ratchetting in uniaxial loading conditions has been presented for a nickel-based superalloy at 650°C using the unified Chaboche viscoplastic model. A third kinematic hardening component was employed to simulate strain ratchetting; and a damage variable, based on plastic strain development, was also incorporated to simulate the damage evolution behaviour. Good agreement between the model predictions and the experimental results was obtained for both damage evolution and strain ratchetting. The model was then utilised to investigate the cyclic deformation behaviour near a crack tip for a single edge notch tension (SENT) specimen. Finite element analyses showed that strain ratchetting is seems to be a characteristic of the fatigue crack tip, which has been used as a criterion to predict the crack growth rates.
117
Abstract: In the present study, a unified crack growth law based on the small fatigue crack growth law was investigated using specimens with different configurations and loading types for the annealed 0.42% carbon steel. Then, a convenient prediction method of fatigue life was proposed. This small fatigue crack growth rate was uniquely determined by the modified small crack growth law, , despite of changing for specimen configurations and loading types. The constants of can be estimated by an empirical equation of without stress/strain gradient. Considered the effect of stress gradient for different specimen configurations and loading types, the stresses under bending loadings and specimen configurations was calculated from that under push-pull loading. Therefore, the fatigue life of the specimens with different configuration and under different loading types can be simply estimated through the fatigue crack growth law based on the only tensile strength of carbon steels. The availability of proposed method was confirmed experimentally by the results of several carbon steels.
121
Abstract: Structural failure of a high pressure orifice flange of an oil refinery is studied by using visual inspection, optical and electron microscopy, tensile tests, fractography and stress calculation. This flange was located at a high pressure (2700 KPa), elevated temperature (370 C°) feeding pipe line. Failure observed during a startup at the time of increasing pressure and temperature. The results of the analysis show that brittle fracture has acted as a main factor for failure of the structure and stress concentration together with corrosion have provided minor sources for the failure. These results indicate that brittle behavior of this flange can attribute to hydrogen embrittlement of the steel material.
125
Abstract: The paper introduces the basic fracture mechanics parameters of advanced building material – cement-based composites with various types of fibres, prepared as high performance concrete/mortar developed by ZPSV, a.s. company for production of thin-walled panels/elements. To this end three-point bend specimens with starting notch were prepared and tested under static (load–deflection diagram, effective fracture toughness) and cyclic loading (fatigue parameter – Wöhler curve). The experimentally obtained results of cement-based composites are compared and the suitability of these types composites for its application are discussed.
129
Abstract: Freeze-thaw damage is one of the most representative damages in concrete durability. Commonly, freezing and thawing tests are conducted to investigate the freeze-thaw resistance of concrete, and the loss of dynamic modulus of concrete is regarded as the failure criterion. However, the research on the evolution of concrete strength during the damage process is still not enough when subjected to freezing and thawing. In this study, the concrete freeze-thaw deterioration was considered as isotropic elastic damage, and relative variation functions of dynamic modulus and Poisson’s ratio with freeze-thaw cycles were set up. Based on damage mechanics, the Ottosen failure surface model with four parameters was established to indicate the relationship between the concrete freeze-thaw failure surface and freeze-thaw cycles. Then the four-parameter failure surface model was set into ADINA finite element software program for secondary development to investigate the strength properties of concrete component under freeze-thaw action. The relationship between load and deflection of concrete was analyzed and simulated after 0, 25 and 50 freeze-thaw cycles. The simulated and experimental results are basically identical, which demonstrates that this finite element simulation is a feasible way to analyze and evaluate the performance of concrete structures in cold regions.
133
Abstract: The present study focuses on the mechanical performance and damage evolution of woven fabric E-glass fiber reinforced epoxy composite (7781/F155-glass/epoxy). For the identical behavior in the 0o and the 90o directions of the tested material, the mechanical experiments were performed with 0o and 45o specimens. Three kinds of tests were implemented respectively: tension test with 0o specimen, compression test with 0o specimen, and tension test with 45o specimen which represents the in-plane shear test. Tension, compression and in-plane shear damage, which are defined as the decreasing ratio of modulus, were calculated from the data of quasi-static cyclic tests. The influence of loading rate on material behaviors were investigated under three different loading rates. Although all of the three loading rates are low, it showed that the strain rate has obvious effects on the ultimate strengths and moduli of the glass fiber reinforced epoxy composite.
137
Abstract: A numerical scheme is presented to predict crack trajectories in three dimensional components. First a relation between the curvature in mixed-mode crack propagation and the corresponding configurational forces based on the principle of maximum dissipation is reviewed. With the help of this, a numerical scheme is presented which is based on a predictor-corrector method using the configurational forces acting on the crack together with their derivatives along real and test paths. It is outlined how to extend the approach to three dimensional problems. With the help of this scheme it is possible to take bigger than usual propagation steps, represented by splines. Essential for this approach is the correct numerical determination of the configurational forces acting on the crack tip. An approach valid for arbitrary non-homogenous and non-linear materials with mixed-mode cracks is presented. Numerical examples show, that the method is able to predict the crack paths in components with holes, stiffeners etc. with good accuracy, saving much computational effort.
141
Abstract: In mechanical engineering and modern municipal construction, shallow-buried cavity structure is used widely. In this paper, Green's Function is studied, which is the solution of displacement field for elastic semi-space with double shallow-buried cavities while bearing anti-plane harmonic line source force at any point. In the complex plane, considering the symmetry of SH-wave scattering , the displacement field aroused by the anti-plane harmonic line source force and the scattering displacement field impacted by the circle cavities comprised of Fourier-Bessel series with undetermined coefficients which satisfies the stress-free condition on the ground surface are constructed. Through applying the method of multi-polar coordinate system, the equations with unknown coefficients can be obtained by using the stress-free condition of the circle cavities in the radial direction. According to orthogonality condition for trigonometric function, these equations can be reduced to a series of algebraic equations. Then the value of the unknown coefficients can be obtained by solving these algebraic equations. Green's function, that is, the total wave displacement field is the superposition of the displacement field aroused by the anti-plane harmonic line source force and the scattering displacement field. By using the expressions, an example is provided to show the effect of the change of relative location of the circle cavities and the location of the line source force. Based on this solution, the problem of interaction of double circular cavities and a linear crack in semi-space can be investigated further.
145
Abstract: Welding residual plastic strains and stresses cause errors during the assembly and reduce the strength of the structure. Based on an elastic-plastic-model, a three-dimensional finite element numerical simulation of multi-pass butt welding of a representative penetration assembly is carried out in this paper. The nonlinear transient temperature field and the real-time dynamic stresses field during multi-pass butt welding with girth welds are obtained. In the end, the residual stresses of the complicated stainless steel penetration structure are calculated by FEM software ANSYS.
149