Interconnect Design Challenges in Nano CMOS Circuit

Article Preview

Abstract:

In the conventional scaling scheme, interconnect delay cannot be reduced and the global interconnect delay become worse if the length of the wire is not scaled. The conventional approaches of global interconnect design are (1)introduction of inverse scaling concept where the upper metal layers have larger cross sections than lower metal layers, (2)insertion of repeaters, and (3) architecture level approach of multi/many core. In order to improve global interconnect delay even in aggressively miniaturized circuit, we have developed the transmission lien interconnect. This paper describes the novel analytical interconnect length distribution and discussion on future interconnect design direction. Then, recent our developments of the transmission line interconnect are described and performance comparison with another global wiring scheme such as optical interconnection is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-230

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Dennard, F. H. Gaensslen, H. N. Yu, V. Leo Rideout, E. Bassous, and A. R. Leblanc, IEEE J. Solid State Circuits, SC-9 (1974) p.256.

DOI: 10.1109/jssc.1974.1050511

Google Scholar

[2] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, (Addision-Wesley, New York, 1990).

Google Scholar

[3] Information on http: /www. itrs. net.

Google Scholar

[4] J. A. Davis, V. K. De, and J. D. Meindl, IEEE Trans. Electron Devices, ED-45(3) (1998) p.580.

Google Scholar

[5] J. A. Davis, V. K. De, and J. D. Meindl, IEEE Trans. Electron Devices, ED-45(3) (1998) p.590.

Google Scholar

[6] S. Amakawa, T. Uezono, T. Sato, K. Okada, and Kazuya Masu, International Workshop on System Level Interconnect Prediction (SLIP) (2007) p.1.

DOI: 10.1145/1231956.1231958

Google Scholar

[7] H. Nakashima, J. Inoue, K. Okada, and K. Masu, IEICE Trans. E88-A(12) (2005) p.3358.

Google Scholar

[8] K. Masu, IEICE Transactions (Denshi-Joho Tsushin Gakkai-Shi), 91(3) (2008) p.170.

Google Scholar

[9] T. Sekiguchi, S. Amakawa, N. Ishihara, and K. Masu, J. Semicon. Tech. &Sci., 10 (2010) p.176.

Google Scholar

[10] S. Gomi, K. Nakamura, H. Ito , K. Okada, and K. Masu, IEEE Custom Integrated Circuits Conference (CICC) (2004) p.325.

Google Scholar

[11] H. Ito , J. Inoue, S. Gomi, H. Sugita, K. Okada, and K. Masu, IEEE International Electron Devices Meeting (IEDM) (2004) p.677.

DOI: 10.1109/iedm.2004.1419258

Google Scholar

[12] H. Ito , H. Sugita, K. Okada, and K. Masu, IEEE Asian Solid-State Circuits Conf. (2005) p.417.

Google Scholar

[13] T. Ishii, H. Ito , M. Kimura, K. Okada, and K. Masu, IEEE Asian Solid-State Circuits Conf. (2006) p.131.

Google Scholar

[14] H. Ito , M. Kimura, K. Okada, and K. Masu, IEEE Symp. VLSI Circuits (2007) p.136.

Google Scholar

[15] H. Ito , M. Kimura, K. Miyashita, T. Ishii, K. Okada, K. Masu, IEEE J. Solid-State Circuits, SC-43(4) (2008) p.1020.

DOI: 10.1109/jssc.2008.917547

Google Scholar

[16] H. Ito , Junki Seita, T. Ishii, H. Sugita, K. Okada, and K. Masu, IEEE Int Interconnect. Tech. Conf. (IITC) (2007) p.193.

Google Scholar

[17] T. Maekawa, H. Ito , and K. Masu, The 34th European Solid-State Circuits Conf. (2008) p.474.

Google Scholar

[18] T. Maekawa, S. Amakawa, H. Ito, N. Ishihara, and K. Masu, Highly energy-efficient on-chip pulsed-current-mode transmission line interconnect, in J. W. Swart, editor, Solid State Circuit Technologies, pp.263-280, INTECH (2010).

DOI: 10.5772/6884

Google Scholar

[19] K. Okada, H. Ito, and K. Masu, Advanced Metallization Conf. (AMC) (2006) pp.2-3, San Diego, CA; Advanced Metallization Conf., Asian Session (ADMETA) (2006) pp.124-125, Tokyo; MRS Proceedings: Advanced Metallization Conference 2006, pp.29-33.

Google Scholar