Fabrication of Large Area, 70 nm Pitch Nanograting Patterns by Nanoimprint Lithography Using Flexible Polymer Stamp

Article Preview

Abstract:

Flexible polymer stamps are considered as an attractive alternative to rigid, brittle and expensive stamps made of inorganic materials because of their low cost and ease of fabrication. In this paper, we present a nanoimprint process to fabricate large area, high-resolution nanograting patterns using flexible polymer stamp made from fluoropolymer. The flexibility and low surface energy of polymer stamp provide a clean release without fracture or deformation of the stamp and of the replicated nanograting. Large-area, high-density nanograting patterns with good shape homogeneity and size uniformity have been successfully fabricated using the flexible polymer stamp with advantages of its good conformal contact and low adhesion. Using flexible polymer stamps can resolve many serious issues in NIL and therefore can bring it to real industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-52

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Y. Chou, P. R. Kruss, W. Zhang: J Vac Sci Technol B Vol. 67 (1997), p.2897.

Google Scholar

[2] I. Maximov, P. Carlberg, D. Wallin, I. Shorubalko, W. Seifert, H. Q. Xu, L. Montelius, L. Samuelson: Nanotechnology Vol. 13 (2002), p.666.

DOI: 10.1088/0957-4484/13/5/325

Google Scholar

[3] S. W. Ahn, K. D. Lee, J. S Kim: Microelectron Eng. Vol 78-79 (2005), p.314.

Google Scholar

[4] W. Wu, B. Cui, X. Y. Sun: J Vac Sci Technol B Vol. 16 (1998), p.3825.

Google Scholar

[5] D. Falconnet, D. Pasqui, S. Park: Nano Lett. Vol. 4 (2004), p. (1909).

Google Scholar

[6] G. Sandra, M. Matthisa, P. Michael, V. D. H. Andre, K. Carsten, O. Andreas, M. Dirk: Microelectron. Eng. Vol. 86 (2009), p.661.

Google Scholar

[7] H. X. Ge, W. Wu, Z. Y. Li, G. Y. Jung, D. Olynick, Y. F. Chen, A. Liddle, S. Y. Wang, R. S. Williams: Nano Lett. Vol. 5 (2005), p.179.

Google Scholar

[8] M. Nagas, H. Namatsu, K. Kurihara, K. Iwadate, K. Murase, T. Makino: Microelectron. Eng. Vol. 30 (1996), p.419.

Google Scholar

[9] T. Yamaguchi, H. Namatsu, M. Nagase, K. Yamazaki, K. Kurihara: Appl. Phys. Lett. Vol. 71 (1997), p.2388.

Google Scholar

[10] M. Beck, M. Graczyk, I. Maximov, E. –L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius: Microelectron. Eng. Vol. 61-62 (2002), p.441.

DOI: 10.1016/s0167-9317(02)00464-1

Google Scholar

[11] F. T. Meng, L. Gang, L. Montelius, J. K. Chu, H. Q. Xu, Y. Zhou, P. Carberg, B Heidari: 8th Conf. on Nanoimprint and Nanoprint 2009, San Jose, USA.

Google Scholar