Mechanical Performance and In Vitro Studies of Hydroxyapatite/Wollastonite Scaffold for Bone Tissue Engineering

Article Preview

Abstract:

A highly porous (~90%) interconnected hydroxyapatite/wollastonite (HA/WS) scaffolds were prepared by polymeric sponge replica method using a slurry containing HA:Calcium silicate in the weight ratio of 50:50 and sintered at 1300 °C. The phase purity of the scaffolds were analyzed by using XRD. The pore size, pore structure, microstructure and elemental analysis of the scaffolds before and after SBF soaking were analyzed using SEM and EDS. In-vitro bioactivity and bioresorbability confirmed the feasibility of the developed scaffolds. The HA/WS scaffold shows two fold increase in the compressive strength compared to pure HA scaffold.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

855-860

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Karp, P.D. Dalton, M.S. Shoichet, Scaffolds for tissue engineering, MRS Bull. Cell. Solid 28 (2003) 301-306.

DOI: 10.1557/mrs2003.85

Google Scholar

[2] X. Zhu, D. Jiang, S. Tan, Z. Zhang, Improvement in the strut thickness of reticulated porous ceramics, J. Am. Ceram. Soc. 84 (2001) 1654–1656.

DOI: 10.1111/j.1151-2916.2001.tb00895.x

Google Scholar

[3] L. L. Hench, Bioceramics, J. Am. Ceram. Soc. 81(1998) 1705–1728.

Google Scholar

[4] V. Karageorgiou, D. Kaplan, Porosity of 3D biornaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474–549.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[5] M. Freyman, I.V. Yannas, L.J. Gibson, Cellular materials as porous scaffolds for tissue engineering, Prog. Mater. Sci. 46 (2001) 273–82.

DOI: 10.1016/s0079-6425(00)00018-9

Google Scholar

[6] I. Jun, J. Song, W. Choi, Y. Koh, H. Kim, Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics, J. Am. Ceram. Soc. 90 (2007) 2703–2708.

DOI: 10.1111/j.1551-2916.2007.01762.x

Google Scholar

[7] X. Miao , L. -P. Tan , L. -S. Tan , X. Huang, Porous calcium phosphate ceramics modified with PLGA–bioactive glass, Mater. Sci. and Eng. C 27 (2007) 274–279.

DOI: 10.1016/j.msec.2006.05.008

Google Scholar

[8] A. Obata, T. Kasuga, Cellular compatibility of bone-like apatite containing silicon species, J. Biomed. Mater. Res. 85A (2008) 140–144.

DOI: 10.1002/jbm.a.31509

Google Scholar

[9] H. Li, J. Chang, Fabrication and characterization of bioactive wollastonite/ PHBV composite scaffolds, Biomaterials, 25 (2004) 5473–5480.

DOI: 10.1016/j.biomaterials.2003.12.052

Google Scholar

[10] A. Martin. E. Romero, S.A. Salinas, L. Jesus, V. Garcia, S.R. Payan, F. Felipe. C. Barraza, Mechanical and bioactive behavior of hydroxyapatite–wollastonite sintered composites, Int. J. Appl. Ceram. Technol. 7 (2010) 164–177.

DOI: 10.1111/j.1744-7402.2009.02377.x

Google Scholar

[11] Q. Zhao, J. Qian, H. Zhou, Y. Yuan, Y. Mao, C. Liu, In vitro osteoblast-like and endothelial cells' response to calcium silicate/calcium phosphate cement, Biomed. Mater. 5 (2010) 035004.

DOI: 10.1088/1748-6041/5/3/035004

Google Scholar

[12] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic, J. Biomed, Mater, Res. 24 (1990) 721-734.

DOI: 10.1002/jbm.820240607

Google Scholar

[13] K.L. Lin, J. Chang, J.X. Lu, J.H. Gao, Y. Zeng, Properties of beta-Ca3(PO4)2 bioceramics prepared using nano-size powders, Ceram. Int. 33 (2007) 979–985.

DOI: 10.1016/j.ceramint.2006.02.011

Google Scholar

[14] F. Gervaso, F. Scalera, S.K. Padmanabhan, A. Sannino, A. Licciulli, High performance hydroxyapatite scaffolds for bone tissue engineering applications, Int. J. Appl. Ceram. Technol. (in press).

DOI: 10.1111/j.1744-7402.2011.02662.x

Google Scholar

[15] I. Manjubala , M. Sivakumar, R.V. Sureshkumar, T.P. Sastry, Bioactivity and osseointegration study of calcium phosphate ceramic of different chemical composition, J. Biomed. Mater. Res. 63 (2002) 200-208.

DOI: 10.1002/jbm.10128

Google Scholar

[16] K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Pressureless sintering of nanocrystalline hydroxyapatite at different temperatures, Met. Mater. Int. 16 (2010) 605-611.

DOI: 10.1007/s12540-010-0813-1

Google Scholar

[17] Y.H.B. Jin, F.N. Oktar, S. Dorozhkin, S. Agathopoulos, Sintering behavior and properties of reinforced hydroxyapatite/TCP biphasic bioceramics with ZnO-whiskers. J. Compos. Mater. 45 (2011) 1435-1345.

DOI: 10.1177/0021998310383728

Google Scholar

[18] S.H. Kwon Y.K. Jun, S.H. Hong, I.S. Lee, H.E. Kim, Calcium phosphate bioceramics with various porosities and dissolution rates, J. Am. Ceram. Soc. 85(2002) 3129–3131.

DOI: 10.1111/j.1151-2916.2002.tb00599.x

Google Scholar

[19] P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, 'Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid, J. Eur. Ceram. Soc. 22 (2002) 511–520.

DOI: 10.1016/s0955-2219(01)00301-6

Google Scholar