[1]
J.M. Karp, P.D. Dalton, M.S. Shoichet, Scaffolds for tissue engineering, MRS Bull. Cell. Solid 28 (2003) 301-306.
DOI: 10.1557/mrs2003.85
Google Scholar
[2]
X. Zhu, D. Jiang, S. Tan, Z. Zhang, Improvement in the strut thickness of reticulated porous ceramics, J. Am. Ceram. Soc. 84 (2001) 1654–1656.
DOI: 10.1111/j.1151-2916.2001.tb00895.x
Google Scholar
[3]
L. L. Hench, Bioceramics, J. Am. Ceram. Soc. 81(1998) 1705–1728.
Google Scholar
[4]
V. Karageorgiou, D. Kaplan, Porosity of 3D biornaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474–549.
DOI: 10.1016/j.biomaterials.2005.02.002
Google Scholar
[5]
M. Freyman, I.V. Yannas, L.J. Gibson, Cellular materials as porous scaffolds for tissue engineering, Prog. Mater. Sci. 46 (2001) 273–82.
DOI: 10.1016/s0079-6425(00)00018-9
Google Scholar
[6]
I. Jun, J. Song, W. Choi, Y. Koh, H. Kim, Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics, J. Am. Ceram. Soc. 90 (2007) 2703–2708.
DOI: 10.1111/j.1551-2916.2007.01762.x
Google Scholar
[7]
X. Miao , L. -P. Tan , L. -S. Tan , X. Huang, Porous calcium phosphate ceramics modified with PLGA–bioactive glass, Mater. Sci. and Eng. C 27 (2007) 274–279.
DOI: 10.1016/j.msec.2006.05.008
Google Scholar
[8]
A. Obata, T. Kasuga, Cellular compatibility of bone-like apatite containing silicon species, J. Biomed. Mater. Res. 85A (2008) 140–144.
DOI: 10.1002/jbm.a.31509
Google Scholar
[9]
H. Li, J. Chang, Fabrication and characterization of bioactive wollastonite/ PHBV composite scaffolds, Biomaterials, 25 (2004) 5473–5480.
DOI: 10.1016/j.biomaterials.2003.12.052
Google Scholar
[10]
A. Martin. E. Romero, S.A. Salinas, L. Jesus, V. Garcia, S.R. Payan, F. Felipe. C. Barraza, Mechanical and bioactive behavior of hydroxyapatite–wollastonite sintered composites, Int. J. Appl. Ceram. Technol. 7 (2010) 164–177.
DOI: 10.1111/j.1744-7402.2009.02377.x
Google Scholar
[11]
Q. Zhao, J. Qian, H. Zhou, Y. Yuan, Y. Mao, C. Liu, In vitro osteoblast-like and endothelial cells' response to calcium silicate/calcium phosphate cement, Biomed. Mater. 5 (2010) 035004.
DOI: 10.1088/1748-6041/5/3/035004
Google Scholar
[12]
T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic, J. Biomed, Mater, Res. 24 (1990) 721-734.
DOI: 10.1002/jbm.820240607
Google Scholar
[13]
K.L. Lin, J. Chang, J.X. Lu, J.H. Gao, Y. Zeng, Properties of beta-Ca3(PO4)2 bioceramics prepared using nano-size powders, Ceram. Int. 33 (2007) 979–985.
DOI: 10.1016/j.ceramint.2006.02.011
Google Scholar
[14]
F. Gervaso, F. Scalera, S.K. Padmanabhan, A. Sannino, A. Licciulli, High performance hydroxyapatite scaffolds for bone tissue engineering applications, Int. J. Appl. Ceram. Technol. (in press).
DOI: 10.1111/j.1744-7402.2011.02662.x
Google Scholar
[15]
I. Manjubala , M. Sivakumar, R.V. Sureshkumar, T.P. Sastry, Bioactivity and osseointegration study of calcium phosphate ceramic of different chemical composition, J. Biomed. Mater. Res. 63 (2002) 200-208.
DOI: 10.1002/jbm.10128
Google Scholar
[16]
K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Pressureless sintering of nanocrystalline hydroxyapatite at different temperatures, Met. Mater. Int. 16 (2010) 605-611.
DOI: 10.1007/s12540-010-0813-1
Google Scholar
[17]
Y.H.B. Jin, F.N. Oktar, S. Dorozhkin, S. Agathopoulos, Sintering behavior and properties of reinforced hydroxyapatite/TCP biphasic bioceramics with ZnO-whiskers. J. Compos. Mater. 45 (2011) 1435-1345.
DOI: 10.1177/0021998310383728
Google Scholar
[18]
S.H. Kwon Y.K. Jun, S.H. Hong, I.S. Lee, H.E. Kim, Calcium phosphate bioceramics with various porosities and dissolution rates, J. Am. Ceram. Soc. 85(2002) 3129–3131.
DOI: 10.1111/j.1151-2916.2002.tb00599.x
Google Scholar
[19]
P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, 'Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid, J. Eur. Ceram. Soc. 22 (2002) 511–520.
DOI: 10.1016/s0955-2219(01)00301-6
Google Scholar