[1]
Navid Yazdi, Farrokh Ayazi and Khalil Najafi, Micromachined Inertial Sensors, Proceedings of the IEEE. 86 (1998) 1640-1659.
DOI: 10.1109/5.704269
Google Scholar
[2]
Hamed Farahani, James K. Mills and William L, Design, fabrication and analysis of micromachined high sensitivity and 0% cross-axis sensitivity capacitive accelerometers, Microsystem Technologies. 15 (2009) 1815-1826.
DOI: 10.1007/s00542-009-0895-1
Google Scholar
[3]
Chae J, Kulah H and Najafi K, A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer, J. Micromech. Microeng. 15 (2005) 336-345.
DOI: 10.1088/0960-1317/15/2/013
Google Scholar
[4]
Qu H, Fang D and Xie H, A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier, IEEE Sensors J. 8 (2008) 1511-1518.
DOI: 10.1109/jsen.2008.923582
Google Scholar
[5]
Girish Krishnan, Chaitanya U. Kshirsagar, G. K. Ananthasuresh et al, Micromachined high-resolution accelerometers, Journal of the Indian Institute of Science 87 (2007) 333-361.
Google Scholar
[6]
Jyh-Cheng Yu, Chungda Lee, Chiaokai Chang, Design and system modeling of a tri-axial microaccelerometer using piezoelectric thin films, Ferroelectrics. 385 (2009) 69-74.
DOI: 10.1080/00150190902888764
Google Scholar
[7]
Chae J, Kulah H and Najafi K, A monolithic three-axis micro-g micromachined silicon capacitive accelerometer, J. Microelectromech. Syst. 14 (2005) 235-242.
DOI: 10.1109/jmems.2004.839347
Google Scholar
[8]
Y Liu, Zh Y Wen, L Chen et al, Multidisciplinary design optimization of the 2-d microaccelerometer, Key Engineering Materials 483 (2011) 647-652.
DOI: 10.4028/www.scientific.net/kem.483.647
Google Scholar