Influence of ZnO and Nb2O5 Additions on Sintering Behavior and Microwave Dielectric Properties of (Mg0.95Ca0.05 )TiO3 Ceramics

Article Preview

Abstract:

The influence of ZnO and Nb2O5 additions on the sinterability, microstructure and microwave dielectric properties of (Mg0.95Ca0.05)TiO3 (abbreviated as 95MCT hereafter) ceramic is investigated. XRD patterns indicate that MgTi2O5 secondary phase can be effectively suppressed by ZnO and Nb2O5 additions, which is beneficial for improving the microwave dielectric properties. Appropriate amount of Nb2O5 addition can effectively improve the Qf value of 95MCT ceramic, which is suggested to be ascribed to the reduced oxygen vacancies. When the ZnO: Nb2O5 mole ratio is 1.5 and the co-doping content is 0.25wt%, the optimal microwave dielectric properties can be obtained Qf=72730GHz(6.8GHz), εr=20.29 and τf=-6.84ppm/°C and the sintering temperature of 95MCT is lowered from 1400°C to 1320°C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1184-1188

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.C. Kell, A.C. Greenham and G.C.E. Olds, High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss, J. Am. Ceram. Soc. 56(1973) 352-354.

DOI: 10.1111/j.1151-2916.1973.tb12684.x

Google Scholar

[2] C.L. Huang, J.T. Tasi and Y.B. Chen, Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li,Nd)1/2TiO3 ceramic system at microwave frequency, Mater. Res. Bull. 36(2001) 547-556.

DOI: 10.1016/s0025-5408(01)00528-1

Google Scholar

[3] H.T. Kim, J.D. Byun and Y. Kim, Microstructure and Microwave Dielectric Properties of Modified Zinc Titanates, Mater. Res. Bull. 33(1998) 963-973.

DOI: 10.1016/s0025-5408(98)00056-7

Google Scholar

[4] M.L. Hsieh, L.S. Chen, S.M. Wang, et al, Low-temperature sintering of microwave dielectrics (Zn, Mg)TiO3, Jpn. J. Appl. Phys. 44(2005) 5045-5048.

Google Scholar

[5] H.T. Kim, S. Nahm and J.D. Byun, Low-Fired (Zn, Mg)TiO3 Microwave Dielectrics, J. Am. Ceram. Soc. 82(1999) 3476-3480.

DOI: 10.1111/j.1151-2916.1999.tb02268.x

Google Scholar

[6] X.H. Zhou, Y. Yuan, L.C. Xiang, et al, Synthesis of MgTiO3 by solid state reaction and characteristics with addition, J. Mater. Sci. 42(2007) 6628-6632.

DOI: 10.1007/s10853-007-1510-4

Google Scholar

[7] W. Wersing, Electronic Ceramics, Elsevier, London, (1991)

Google Scholar

[8] C.L. Huang, J.L. Hou, C.L. Pan, et al, Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 ceramics, J. Alloys Compd. 450(2008) 359-363.

DOI: 10.1016/j.jallcom.2006.10.132

Google Scholar

[9] C.L. Huang, C.H. Shen, C.L. Pan, Characterization and dielectric behavior of V2O5-doped MgTiO3–CaTiO3 ceramic system at microwave frequency, Mater. Sci. Eng. B. 145 (2007) 91-96.

DOI: 10.1016/j.mseb.2007.10.016

Google Scholar

[10] B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8(1960) 402.

Google Scholar

[11] M.A. Sanoj, Manoj Raama Varma, Sinterability and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3–glass ceramic composites, J. Alloys Compd. 477 (2009) 565-569.

DOI: 10.1016/j.jallcom.2008.10.069

Google Scholar

[12] C.H. Shen, C.L. Huang, L.M. Lin, et al, Characterization and dielectric behavior of V2O5-doped 0.9Mg0.95Co0.05TiO3-0.1Ca0.6La0.8/3TiO3 ceramic system at microwave frequency, J. Alloys Compd. 489(2010) 170-174.

DOI: 10.1016/j.jallcom.2009.09.045

Google Scholar

[13] C.L. Huang, M.H. Weng and C. Wu, Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature, Mater. Res. Bull. 36(2001) 2741-2750.

DOI: 10.1016/s0025-5408(01)00752-8

Google Scholar

[14] R.M. Germen, Liquid phase sintering, Plenum Publishing, New York, (1985)

Google Scholar

[15] V.A. Izhevskyi, A.H.A. Bressiani and J.C. Bressiani, Effect of Liquid Phase Sintering on Microstructure and Mechanical Properties of Yb2O3-AlN Containing SiC-Based Ceramics, J. Am. Ceram. Soc. 88(5) (2005) 1115-1121.

DOI: 10.1111/j.1551-2916.2005.00212.x

Google Scholar

[16] L.A. Khalam, M.T. Sebastian, Effect of Cation Substitution and Non-Stoichiometry on the Microwave Dielectric Properties of Sr(B'0.5Ta0.5)O3 [B'=Lanthanides] Perovskites, J. Am. Ceram. Soc. 89 (2006) 3689-3695.

DOI: 10.1111/j.1551-2916.2006.01321.x

Google Scholar

[17] C.L. Huang, M.H. Weng, Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature, Materials Research Bull. 36 (2001) 2741-2750.

DOI: 10.1016/s0025-5408(01)00752-8

Google Scholar

[18] W.W. Cho, K.I. Kakimoto and H.S. Ohsato, High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency, Jpn. J. Appl. Phys. 43(2004) 6221-6224.

DOI: 10.1143/jjap.43.6221

Google Scholar