[1]
I. Manjubala, S. Scheler, J. Bossert, K. D. Jandt, Mineralisation of chitosan scaffolds with nano- apatite formation by double diffusion technique, Acta Biomater. 2 (2006) 75-84.
DOI: 10.1016/j.actbio.2005.09.007
Google Scholar
[2]
X. H. Liu, L. A. Smith, J. Hu, P. X. Ma, Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering, Biomaterials. 30 (2009) 2252-2258.
DOI: 10.1016/j.biomaterials.2008.12.068
Google Scholar
[3]
J. Zeng, X. Chen, X. Xu, Q. Liang, X. Bian, L. Yang, X. Jing, Ultrafine fibers electrospun from biodegradable polymers, J Appl Polym Sci. 89 (2003) 1085-1092.
DOI: 10.1002/app.12260
Google Scholar
[4]
Y. You, J. H. Youk, S. Lee, B. M. Min, S. J. Lee, W. H. Park, Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers, Mater Lett. 60 (2006) 757-760.
DOI: 10.1016/j.matlet.2005.10.007
Google Scholar
[5]
K. Ohgo, C. H. Zhao, M. Kobayashi, T. Asakura, Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method, Polymer. 44 (2003) 841-846.
DOI: 10.1016/s0032-3861(02)00819-4
Google Scholar
[6]
H. Homayoni, S. A. H. Ravandi, M. Valizadeh, Electrospinning of chitosan nanofibers: processing optimization, Carbohydr Polym. 77 (2009) 656-661.
DOI: 10.1016/j.carbpol.2009.02.008
Google Scholar
[7]
N. T. Hiep, B. T. Lee, Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility, J Mater Sci: Mater Med. 21 (2010) 1969-1978.
DOI: 10.1007/s10856-010-4048-y
Google Scholar
[8]
C.H. Kim, M.S. Khil, H.Y. Kim, et al., An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation, J Biomed Mater Res B Appl Biomater. 78B (2006) 283-290.
DOI: 10.1002/jbm.b.30484
Google Scholar
[9]
E. J. Chong, T. T. Phan, I. J. Lim, et al., Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution, Acta Biomater. 3 (2007) 321-330.
DOI: 10.1016/j.actbio.2007.01.002
Google Scholar
[10]
A.L. Boskey, M. Maresca, W. Ullrich, et al., Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel, Bone Miner. 22 (1993) 147-159.
DOI: 10.1016/s0169-6009(08)80225-5
Google Scholar
[11]
A. L. Boskey, M. Maresca, S. Doty, et al., Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth, Bone Miner. 11 (1990) 55-65.
DOI: 10.1016/0169-6009(90)90015-8
Google Scholar
[12]
C. E. Tye, K. R. Rattray, K. J. Warner, et al., Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein, J Biol Chem. 278 (2003) 7949-7955.
DOI: 10.1074/jbc.m211915200
Google Scholar
[13]
L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, S. I. Stupp, Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel, Chem Rev. 108 (2008) 4754-4783.
DOI: 10.1021/cr8004422
Google Scholar
[14]
S. Gajjeraman, K. Narayanan, J. Hao, et al., Matrix Macromolecules in Hard Tissues Control the Nucleation and Hierarchical Assembly of Hydroxyapatite, J Biol Chem. 282 (2007) 1193-1204.
DOI: 10.1074/jbc.m604732200
Google Scholar
[15]
V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length, Mater Sci Eng C. 29 (2009) 663-668.
Google Scholar
[16]
G. Falini, M. Gazzano, A. Ripamonti, Control of the architectural assembly of octacalcium phosphate crystals in denatured collagenous matrices, J Mater Chem. 10 (2000) 535-538.
DOI: 10.1039/a906271h
Google Scholar
[17]
H. Li, Z. Z. Guo, B. Xue, Y. M. Zhang, W. Y. Huang, Collagen modulating crystallization of apatite in a biomimetic gel system, Ceram Int. 37 (2011) 2305-2310.
DOI: 10.1016/j.ceramint.2011.03.019
Google Scholar
[18]
L. Ghasemi-Mobarakeh, M. P.Prabhakaran, M. Morshed, et al., Electrospun poly(ε-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials. 29 (2008) 4532-4539.
DOI: 10.1016/j.biomaterials.2008.08.007
Google Scholar
[19]
Q. F. Dang, J. Q. Yan, J. J. Li, et al., Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel, Carbohydr Polym. 83 (2011) 171-178.
DOI: 10.1016/j.carbpol.2010.07.038
Google Scholar
[20]
J. Cho, M. C. Heuzey, A. Begin, P. J. Carreau, Physical Gelation of Chitosan in the Presence of β-Glycerophosphate: The Effect of Temperature, Biomacromolecules. 6 (2005) 3267-3275.
DOI: 10.1021/bm050313s
Google Scholar
[21]
Costantino Del Gaudio, Alessandra Bianco, Marcella Folin, Silvia Baiguera, M. Grigioni, Structural characterization and cell response evaluation of electrospun PCL membranes: Micrometric versus submicrometric fibers, J Biomed Mater Res A. 89A (2009) 1028-1039.
DOI: 10.1002/jbm.a.32048
Google Scholar
[22]
S. Singh, P. Bhardwaj, V. Singha, et al., Synthesis of nanocrystalline calcium phosphate in microemulsion - effect of nature of surfactants, J Colloid Interface Sci. 319 (2008) 322-329.
DOI: 10.1016/j.jcis.2007.09.059
Google Scholar
[23]
Z. Ma, F. Chen, Y.J. Zhu, et al., Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: Electrospinning preparation and biomineralization, J Colloid Interface Sci. 359 (2011) 371-379.
DOI: 10.1016/j.jcis.2011.04.023
Google Scholar
[24]
C. Sekara, P. Kanchana, R. Nithyaselvi, E. K. Girija, Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal, Mater Chem Phys. 115 (2009) 21-27.
DOI: 10.1016/j.matchemphys.2008.11.020
Google Scholar
[25]
C. Combes, C. Rey, Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater. 6 (2010) 3362-3378.
DOI: 10.1016/j.actbio.2010.02.017
Google Scholar
[26]
K. Rodríguez, S. Renneckar, P. Gatenholm, Biomimetic Calcium Phosphate Crystal Mineralization on Electrospun Cellulose-Based Scaffolds, ACS Appl Mater Interfaces. 3 (2011)
DOI: 10.1021/am100972r
Google Scholar
[27]
M. J. Olszta, X. G. Cheng, S. S. Jee, R. Kumar, Y. Y. Kima, M. J. Kaufman, E. P. Douglas, L. B. Gower, Bone structure and formation: A new perspective, Mater Sci Eng R. 58 (2007)
Google Scholar
[28]
C. L. He, G. Y. Xiao, X. B. Jin, C. H. Sun, P. X. Ma, Electrodeposition on Nanofi brous Polymer Scaffolds: Rapid Mineralization, Tunable Calcium Phosphate Composition and Topography, Adv Funct Mater. 20 (2010) 3568-3576.
DOI: 10.1002/adfm.201000993
Google Scholar
[29]
S. Schweizer, A. Taubert, Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution, Macromol Biosci. 7 (2007) 1085-1099.
DOI: 10.1002/mabi.200600283
Google Scholar
[30]
G. He, A. George, Dentin Matrix Protein 1 Immobilized on Type I Collagen Fibrils Facilitates Apatite Deposition in Vitro, J Biol Chem. 279 (2004) 11649-11656.
DOI: 10.1074/jbc.m309296200
Google Scholar
[31]
M. Iijima, J. M. Oldak, Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix, Biomaterials. 26 (2005) 1595-1603.
DOI: 10.1016/j.biomaterials.2004.05.009
Google Scholar