Preparation of Mineralized Electrospun PCL/Gelatin Scaffolds via Double Diffusion System

Article Preview

Abstract:

For successful reconstruction of skeletal defects, a range of materials including ceramics, polymers and their composites have been developed. The goal of our work is to prepare mineralized PCL/gelatin composite scaffolds in a double diffusion system as implants for bone tissue engineering application. Fibrous PCL/gelatin scaffold fabricated via electrospinning followed by immersing into disodium-β-glycerophosphate(β-GP) (10 mg/ml) for 12h were used as substrates for calcium phosphate (CaP) mineralization. The precipitation reaction was biomimetically carried out in a double diffusion system for a week. The CaP minerals precipitated on the scaffold were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy. The results show that apatite aggregates are combination of HAP, DCPD and ACP. β-GP can effectively promote the formation of CaP crystals. The composite scaffold fabricated in this paper hold promise for use in bone tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1740-1745

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Manjubala, S. Scheler, J. Bossert, K. D. Jandt, Mineralisation of chitosan scaffolds with nano- apatite formation by double diffusion technique, Acta Biomater. 2 (2006) 75-84.

DOI: 10.1016/j.actbio.2005.09.007

Google Scholar

[2] X. H. Liu, L. A. Smith, J. Hu, P. X. Ma, Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering, Biomaterials. 30 (2009) 2252-2258.

DOI: 10.1016/j.biomaterials.2008.12.068

Google Scholar

[3] J. Zeng, X. Chen, X. Xu, Q. Liang, X. Bian, L. Yang, X. Jing, Ultrafine fibers electrospun from biodegradable polymers, J Appl Polym Sci. 89 (2003) 1085-1092.

DOI: 10.1002/app.12260

Google Scholar

[4] Y. You, J. H. Youk, S. Lee, B. M. Min, S. J. Lee, W. H. Park, Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers, Mater Lett. 60 (2006) 757-760.

DOI: 10.1016/j.matlet.2005.10.007

Google Scholar

[5] K. Ohgo, C. H. Zhao, M. Kobayashi, T. Asakura, Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method, Polymer. 44 (2003) 841-846.

DOI: 10.1016/s0032-3861(02)00819-4

Google Scholar

[6] H. Homayoni, S. A. H. Ravandi, M. Valizadeh, Electrospinning of chitosan nanofibers: processing optimization, Carbohydr Polym. 77 (2009) 656-661.

DOI: 10.1016/j.carbpol.2009.02.008

Google Scholar

[7] N. T. Hiep, B. T. Lee, Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility, J Mater Sci: Mater Med. 21 (2010) 1969-1978.

DOI: 10.1007/s10856-010-4048-y

Google Scholar

[8] C.H. Kim, M.S. Khil, H.Y. Kim, et al., An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation, J Biomed Mater Res B Appl Biomater. 78B (2006) 283-290.

DOI: 10.1002/jbm.b.30484

Google Scholar

[9] E. J. Chong, T. T. Phan, I. J. Lim, et al., Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution, Acta Biomater. 3 (2007) 321-330.

DOI: 10.1016/j.actbio.2007.01.002

Google Scholar

[10] A.L. Boskey, M. Maresca, W. Ullrich, et al., Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel, Bone Miner. 22 (1993) 147-159.

DOI: 10.1016/s0169-6009(08)80225-5

Google Scholar

[11] A. L. Boskey, M. Maresca, S. Doty, et al., Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth, Bone Miner. 11 (1990) 55-65.

DOI: 10.1016/0169-6009(90)90015-8

Google Scholar

[12] C. E. Tye, K. R. Rattray, K. J. Warner, et al., Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein, J Biol Chem. 278 (2003) 7949-7955.

DOI: 10.1074/jbc.m211915200

Google Scholar

[13] L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, S. I. Stupp, Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel, Chem Rev. 108 (2008) 4754-4783.

DOI: 10.1021/cr8004422

Google Scholar

[14] S. Gajjeraman, K. Narayanan, J. Hao, et al., Matrix Macromolecules in Hard Tissues Control the Nucleation and Hierarchical Assembly of Hydroxyapatite, J Biol Chem. 282 (2007) 1193-1204.

DOI: 10.1074/jbc.m604732200

Google Scholar

[15] V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length, Mater Sci Eng C. 29 (2009) 663-668.

Google Scholar

[16] G. Falini, M. Gazzano, A. Ripamonti, Control of the architectural assembly of octacalcium phosphate crystals in denatured collagenous matrices, J Mater Chem. 10 (2000) 535-538.

DOI: 10.1039/a906271h

Google Scholar

[17] H. Li, Z. Z. Guo, B. Xue, Y. M. Zhang, W. Y. Huang, Collagen modulating crystallization of apatite in a biomimetic gel system, Ceram Int. 37 (2011) 2305-2310.

DOI: 10.1016/j.ceramint.2011.03.019

Google Scholar

[18] L. Ghasemi-Mobarakeh, M. P.Prabhakaran, M. Morshed, et al., Electrospun poly(ε-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials. 29 (2008) 4532-4539.

DOI: 10.1016/j.biomaterials.2008.08.007

Google Scholar

[19] Q. F. Dang, J. Q. Yan, J. J. Li, et al., Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel, Carbohydr Polym. 83 (2011) 171-178.

DOI: 10.1016/j.carbpol.2010.07.038

Google Scholar

[20] J. Cho, M. C. Heuzey, A. Begin, P. J. Carreau, Physical Gelation of Chitosan in the Presence of β-Glycerophosphate: The Effect of Temperature, Biomacromolecules. 6 (2005) 3267-3275.

DOI: 10.1021/bm050313s

Google Scholar

[21] Costantino Del Gaudio, Alessandra Bianco, Marcella Folin, Silvia Baiguera, M. Grigioni, Structural characterization and cell response evaluation of electrospun PCL membranes: Micrometric versus submicrometric fibers, J Biomed Mater Res A. 89A (2009) 1028-1039.

DOI: 10.1002/jbm.a.32048

Google Scholar

[22] S. Singh, P. Bhardwaj, V. Singha, et al., Synthesis of nanocrystalline calcium phosphate in microemulsion - effect of nature of surfactants, J Colloid Interface Sci. 319 (2008) 322-329.

DOI: 10.1016/j.jcis.2007.09.059

Google Scholar

[23] Z. Ma, F. Chen, Y.J. Zhu, et al., Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: Electrospinning preparation and biomineralization, J Colloid Interface Sci. 359 (2011) 371-379.

DOI: 10.1016/j.jcis.2011.04.023

Google Scholar

[24] C. Sekara, P. Kanchana, R. Nithyaselvi, E. K. Girija, Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal, Mater Chem Phys. 115 (2009) 21-27.

DOI: 10.1016/j.matchemphys.2008.11.020

Google Scholar

[25] C. Combes, C. Rey, Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater. 6 (2010) 3362-3378.

DOI: 10.1016/j.actbio.2010.02.017

Google Scholar

[26] K. Rodríguez, S. Renneckar, P. Gatenholm, Biomimetic Calcium Phosphate Crystal Mineralization on Electrospun Cellulose-Based Scaffolds, ACS Appl Mater Interfaces. 3 (2011)

DOI: 10.1021/am100972r

Google Scholar

[27] M. J. Olszta, X. G. Cheng, S. S. Jee, R. Kumar, Y. Y. Kima, M. J. Kaufman, E. P. Douglas, L. B. Gower, Bone structure and formation: A new perspective, Mater Sci Eng R. 58 (2007)

Google Scholar

[28] C. L. He, G. Y. Xiao, X. B. Jin, C. H. Sun, P. X. Ma, Electrodeposition on Nanofi brous Polymer Scaffolds: Rapid Mineralization, Tunable Calcium Phosphate Composition and Topography, Adv Funct Mater. 20 (2010) 3568-3576.

DOI: 10.1002/adfm.201000993

Google Scholar

[29] S. Schweizer, A. Taubert, Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution, Macromol Biosci. 7 (2007) 1085-1099.

DOI: 10.1002/mabi.200600283

Google Scholar

[30] G. He, A. George, Dentin Matrix Protein 1 Immobilized on Type I Collagen Fibrils Facilitates Apatite Deposition in Vitro, J Biol Chem. 279 (2004) 11649-11656.

DOI: 10.1074/jbc.m309296200

Google Scholar

[31] M. Iijima, J. M. Oldak, Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix, Biomaterials. 26 (2005) 1595-1603.

DOI: 10.1016/j.biomaterials.2004.05.009

Google Scholar