[1]
H. Mutsuzaki, A. Ito, M. Sakane, Y. Sogo, A. Oyane, N. Ochiai, Fibroblast growth factor-2-apatite composite layers on titanium screw to reduce pin tract infection rate, J Biomed Mater Res B Appl Biomater. 86 (2008) 365-374.
DOI: 10.1002/jbm.b.31029
Google Scholar
[2]
J.A. Abraham, A. Mergia, J.L. Whang, A. Tumolo, J. Friedman, K.A. Hjerrild, D. Gospodarowicz, J.C. Fiddes, Nucleotide-Sequence of a Bovine Clone Encoding the Angiogenic Protein, Basic Fibroblast Growth-Factor, Science. 233 (1986) 545-548.
DOI: 10.1126/science.2425435
Google Scholar
[3]
G.S. Mcgee, J.M. Davidson, A. Buckley, A. Sommer, S.C. Woodward, A.M. Aquino, R. Barbour, A.A. Demetriou, Recombinant Basic Fibroblast Growth-Factor Accelerates Wound-Healing, J Surg Res. 45 (1988) 145-153.
DOI: 10.1016/0022-4804(88)90034-0
Google Scholar
[4]
A.S. Prasad, Zinc: an overview, Nutrition (Burbank, Los Angeles County, Calif. 11 (1995) 93-99.
Google Scholar
[5]
M. Andrews, C. Gallagher-Allred, Role of zinc in wound healing, The Advances in Wound Care. 12 (1999) 137-138.
Google Scholar
[6]
M. Yamaguchi, H. Oishi, Y. Suketa, Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl-tRNA synthetase, Biochemical pharmacology. 37 (1988) 4075-4080.
DOI: 10.1016/0006-2952(88)90098-6
Google Scholar
[7]
Y. Sogo, A. Ito, M. Onoguchi, A. Oyane, H. Tsurushima, N. Ichinose, Formation of a FGF-2 and calcium phosphate composite layer on a hydroxyapatite ceramic for promoting bone formation, Biomedical Materials. 2 (2007) S175-S180.
DOI: 10.1088/1748-6041/2/3/s16
Google Scholar
[8]
X. Li, X. Wang, A. Ito, Y. Sogo, K. Cheng, A. Oyane, Effect of Coprecipitation Temperature on the Properties and Activity of Fibroblast Growth Factor-2 Apatite Composite Layer, Materials Science and Engineering C. 29 (2008) 216-221.
DOI: 10.1016/j.msec.2008.06.012
Google Scholar
[9]
X. Wang, A. Ito, Y. Sogo, X. Li, H. Tsurushima, A. Oyane, Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro, Acta Biomater. 5 (2009) 2647-2656.
DOI: 10.1016/j.actbio.2009.03.020
Google Scholar
[10]
X. Wang, A. Ito, Y. Sogo, X. Li, A. Oyane, Zinc-containing apatite layers on external fixation rods promoting cell activity, Acta biomaterialia. 6 (2010) 962-968.
DOI: 10.1016/j.actbio.2009.08.038
Google Scholar
[11]
Y. Li, I.S. Lee, F.Z. Cui, S.H. Choi, The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium, Biomaterials. 29 (2008) 2025-(2032).
DOI: 10.1016/j.biomaterials.2008.01.009
Google Scholar
[12]
X.P. Wang, X. Li, K. Onuma, A. Ito, Y. Sogo, K. Kosuge, A. Oyane, Mesoporous bioactive glass coatings on stainless steel for enhanced cell activity, cytoskeletal organization and AsMg immobilization, J Mater Chem. 20 (2010) 6437-6445.
DOI: 10.1039/c0jm00399a
Google Scholar
[13]
X.P. Wang, A. Ito, Y. Sogo, X. Li, A. Oyane, Silicate-apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast, J Biomed Mater Res A. 92A (2010) 1181-1189.
DOI: 10.1002/jbm.a.32436
Google Scholar
[14]
X. Wang, A. Oyane, H. Tsurushima, Y. Sogo, X. Li, A. Ito, BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer, Biomed Mater. 6 (2011) 045004.
DOI: 10.1088/1748-6041/6/4/045004
Google Scholar
[15]
X. Wang, A. Ito, X. Li, Y. Sogo, A. Oyane, Signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating, Biofabrication. 3 (2011) 022001.
DOI: 10.1088/1758-5082/3/2/022001
Google Scholar
[16]
X. Wang, X. Li, A. Ito, Y. Sogo, Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO(2)-P(2)O(5) (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater. 7 (2011) 3638-3644.
DOI: 10.1016/j.actbio.2011.06.029
Google Scholar