Design and Analysis of Taper Structure for Light Coupling into Photonic Crystal Waveguides Fabricated by Si-Ion Implantation

Article Preview

Abstract:

In this paper, we designed and analyzed an efficient taper structure to couple light into and out of photonic crystal waveguides (PhCWs) fabricated by Si-ion implantation and electron beam lithography. The coupling structure employs the gentle refractive-index distribution produced in the SiO2 layer by Si-ion implantation. A taper structure is designed for effective coupling of transverse electric (TE) polarized light (λ = 1.55 μm) into a submicron size PhCW consisting of triangular lattice of air holes (lattice constant, a = 0.666 μm, radius of air holes, r = 0.232 μm, waveguide width, W1 ~ 0.7 μm). The influence of the taper length on the transmission characteristics is investigated. Efficiency in excess of 95% is demonstrated using the finite-difference time-domain and beam propagation methods. This is important for their practical applications in photonic integrated circuits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-166

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Pavesi L.D. Negro C. Mazzoleni G. Franzo and F. Priolo: Nature Vol. 408 (2000). p.440.

Google Scholar

[2] A.V. Umenyi, S. Kawashiri, M. Honmi, T. Shinagawa, K. Miura, O. Hanaizumi, S. Yamamoto, A. Inouye, M. Yoshikawa, Key Eng. Mat., 459 (2011) 168.

DOI: 10.4028/www.scientific.net/kem.459.168

Google Scholar

[3] A. Mekis J. C. Chen I. Kurland S. Fan P. R. Villeneuve and J. D. Joannopoulos: Phys. Rev. Let. Vol. 77 (1996). p.3787.

Google Scholar

[4] A.V. Umenyi, S. Kawashiri, M. Honmi, T. Shinagawa, K. Miura, O. Hanaizumi, Key Eng. Mat., 459 (2011) 162.

Google Scholar

[5] S. Kawashiri, A.V. Umenyi, M. Honmi, T. Shinagawa, K. Miura, O. Hanaizumi, S. Yamamoto, A. Inouye, M. Yoshikawa, ISSS&AMDE2009, 1P19, Kiryu, December 10, (2009).

DOI: 10.4028/www.scientific.net/kem.459.168

Google Scholar

[6] P. Bienstman, S. Assefa, S. G. Johnson, J. D. Joannopoulos, G. S. Petrich and L. A. Kolodziejski, J. Opt. Soc. Am. B, 20 (2003) 1817.

DOI: 10.1364/josab.20.001817

Google Scholar

[7] Q. Wang, T. Loh, D. K. Ting Ng, and S. Ho, IEEE J. Sel. Top. In Quant. Elec., 17 (2011) 581.

Google Scholar

[8] J.F. Ziegler J.P. Biersack U. Littmark: The Stopping and Range of Ion in Solids (Pergamon, New York 1985).

Google Scholar

[9] A. V. Umenyi K. Miura and O. Hanaizumi: IEEE J. Lightw. Technol. Vol. 27 (2009). p.4995.

Google Scholar

[10] J. P. Berenger, J. Comput. Phys., Vol. 114 (1994), p.185.

Google Scholar

[11] C. R. Pollock and M. Lipson: Integrated Photonics (Kluwer Academic Publishers, 2003).

Google Scholar

[12] Meep FDTD, http: /ab-initio. mit. edu/meep.

Google Scholar