Growth of SiOx Nanowires by Simple Vapor Transport Method and their Optical Properties

Article Preview

Abstract:

SiOx nanowires were grown on Si substrates by a simple vapor transport method of heating the mixture of silicon monoxide and carbon powders at 1000 °C in a tube of the furnace. The dependence of the growth velocity on the growth temperature and on the radius of nanowires indicates that the SiOx nanowires grow through the vaporliquidsolid (VLS) growth mechanism. The properties of the nanowires are characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-145

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. W. Kwak, H. Y. Cho, and W. -C. Yang, Physica E Vol. 37 (2007), p.153.

Google Scholar

[2] J. Albuschies, M. Baus, O. Winkler, B. Handam, B. Spangenberg, and H. Kurz, Microelectronic Engineering Vol. 83 (2006), p.1530.

DOI: 10.1016/j.mee.2006.01.145

Google Scholar

[3] M. Meyyappan and M. Sunkara: Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, New York, 2010).

Google Scholar

[4] V. Schmidt, J. V. Wiittemann, and U. Gosele, Chem. Rev. Vol. 110 (2010), p.361.

Google Scholar

[5] E. I. Givargizov, J. Crystal Growth Vol 31 (1975), p.20.

Google Scholar

[6] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Minnesota, 1992).

Google Scholar

[7] S. Salimian and M. J. Delfino, J. Appl. Phys. Vol. 70 (1991), p.3970.

Google Scholar

[8] M. R. Houston and R. J. Maboudian, J. Appl. Phys. Vol. 78 (1995), p.3801.

Google Scholar

[9] D. D. D. Ma, S. T. Lee, and J. Shinar, Appl. Phys. Lett. Vol. 87, (2005), p.033107.

Google Scholar

[10] H. Z. Song, X. M. Bao, N. S. Li, and X. L. Wu, Appl. Phys. Lett. Vol. 72 (1998), p.356.

Google Scholar

[11] G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, Appl. Phys. Lett. Vol. 69 (1996), p.1689.

Google Scholar

[12] W. H. Zheng, J. Xia, S. D. Lam, K. W. Cheah, M. R. Rakhshandehroo, and S. W. Pang, Appl. Phys. Lett. Vol. 74, (1999), p.386.

Google Scholar