Preparation of NASICON Disk by Tape Casting and its CO2 Sensing Properties

Article Preview

Abstract:

In this work, NASICON-type disks with the formula, Na3Zr2Si2PO12 were prepared by non-aqueous tape casting method. The effect of the dispersant on the slurry viscosity was investigated, triethanolamine was found to be an effective dispersant for NASICON slurry. The correlation between the overall conductivity and the sintering conditions (temperature and time) for the NASICON disk was also studied. Green tapes were calcined at 900°C, 1000°C, 1100°C for 6h and 12h, respectively. Results revealed that the overall conductivity increased with the increasing of the sintering temperature and decreased with the increasing of the sintering time. The segregation of resistive monoclinic ZrO2 phase was examined to have a negative effect on the overall conductivity. The CO2 sensor using NASICON disk and Li2CO3-BaCO3 complex thick film was fabricated and evaluated, the sensitivity was about 82.9 mV/decade at 450°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.Y.P. Hong, Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12, Mater. Res. Bull. 11 (1976) 173-182.

DOI: 10.1016/0025-5408(76)90073-8

Google Scholar

[2] J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11 (1976) 203-220.

DOI: 10.1016/0025-5408(76)90077-5

Google Scholar

[3] R.S. Gordon, G.R. Miller, E.D. Beck, J.R. Rasmunssen, Fabrication and characterization of Nasicon electrolytes, Solid State Ionics, 3/4 (1981) 243-248.

DOI: 10.1016/0167-2738(81)90091-6

Google Scholar

[4] P. Fabrya, J.P. Grosa, J.F. Million-Brodaza, M. Kleitza, Nasicon, Nasicon, an ionic conductor for solid-state Na+-selective electrode, Sensors and Actuators 15 (1) (1988) 33-49.

DOI: 10.1016/0250-6874(88)85016-9

Google Scholar

[5] N. Miura, S. Yao, Y. Shimizu, N. Yamazoe, Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode, J. Electrochem. Soc. 139 (5) (1992) 1384-1388.

DOI: 10.1149/1.2069417

Google Scholar

[6] S. Yao, Y. Shimizu, N. Miura, N. Yamazoe, Solid Electrolyte CO2 Sensor Using Binary Carbonate Electrode, Chem. Lett. 1990 (1990) 2033-(2036).

DOI: 10.1246/cl.1990.2033

Google Scholar

[7] S. Yao, Y. Shimizu, N. Miura, N. Yamazoe, Solid electrolyte carbon dioxide sensor using sodium ionic conductor and lithium carbonate-based auxiliary phase, Appl. Phys. A 57 (1993) 25-29.

DOI: 10.1007/bf00331212

Google Scholar

[8] T. Kida, Y. Miyachi, K. Shimanoe, N. Yamazoe, NASICON thick film-based CO2 sensor prepared by a sol-gel method, Sensors and Actuators B 80 (2001) 28-32.

DOI: 10.1016/s0925-4005(01)00878-4

Google Scholar

[9] H. Dang, X. Guo, Investigation of porous counter electrode for the CO2 sensing properties of NASICON based gas sensor, Solid State Ionics 201 (2011) 68-72.

DOI: 10.1016/j.ssi.2011.08.011

Google Scholar

[10] N. Miura, M. Iio, G. Lu, N. Yamazoe, Sodium ion conductor based sensor attached with NaNO2 for amperometric detection of NO2, J. Electrochem. Soc. 143 (1996) L241-L243.

DOI: 10.1149/1.1837158

Google Scholar

[11] N. Miura, M. Ono, K. Shimanoe, N. Yamazoe, A compact solid-state amperometric sensor for detection of NO2 in ppb range, Sensors and Actuators B 49 (1998) 101-109.

DOI: 10.1016/s0925-4005(97)00335-3

Google Scholar

[12] N. Miura, M. Iio, G. Lu, N. Yamazoe, Solid-state amperometric NO2 sensor using a sodium ion conductor, Sensors and Actuators B 35 (1996) 124-129.

DOI: 10.1016/s0925-4005(97)80041-x

Google Scholar

[13] Y. Shimizu, H. Nishi, H. Suzuki, K. Maeda, Solid-state NOx sensor combined with NASICON and Pb-Ru-based pyrochlore-type oxide electrode, Sensors and Actuators B 65 (2000) 141-143.

DOI: 10.1016/s0925-4005(99)00442-6

Google Scholar

[14] X. Liang, Y. He et al., Solid-state potentiometric H2S sensor combining NASICON with Pr6O11-doped SnO2 electrode, Sensors and Actuators B 125 (2007) 544-549.

DOI: 10.1016/j.snb.2007.02.050

Google Scholar

[15] X. Liang, T. Zhong, B. Quan, B. Wang, H. Guan, Solid-state potentiometric SO2 sensor combining NASICON with V2O5-doped TiO2 electrode, Sensors and Actuators B 134 (2008) 25-30.

DOI: 10.1016/j.snb.2008.04.003

Google Scholar

[16] X. Liang, T. Zhong et al., Ammonia sensor based on NASICON and Cr2O3 electrode, Sensors and Actuators B 136 (2009) 479-483.

DOI: 10.1016/j.snb.2008.11.028

Google Scholar

[17] X. Liang, G. Lu, Ti. Zhong, F. Liu, B. Quan, New type of ammonia/toluene sensor combining NASICON with a couple of oxide electrodes, Sensors and Actuators B 150 (2010) 355-359.

DOI: 10.1016/j.snb.2010.06.061

Google Scholar

[18] Y. Zeng, D.L. Jiang, P. Greil, Tape casting of aqueous Al2O3 slurries, J. Eur. Ceram. Soc. 20 (2000) 1691-1697.

Google Scholar

[19] K. Zhu, H. Wang, J. Qiu, J. Luo and H. Ji, Fabrication of 0. 655Pb(Mg1/3Nb2/3)O3-0. 345PbTiO3 functionally graded piezoelectric actuator by tape-casting, J. Electroceram. 27 (2011) 197-202.

DOI: 10.1007/s10832-011-9665-4

Google Scholar

[20] X.G. Capdevila, J. Folch, A. Calleja, J. Llorens, M. Segarra, F. Espiell, J.R. Morante, High-density YSZ tapes fabricated via the multi-folding lamination process, Ceramics International 35 (2009) 1219-1226.

DOI: 10.1016/j.ceramint.2008.06.018

Google Scholar

[21] A.K. Maiti, B. Rajender, Terpineol as dispersant for tape casting yttria stabilized zirconia powder, Mater. Sci. Eng., A 333 (2002) 35-40.

DOI: 10.1016/s0921-5093(01)01821-4

Google Scholar

[22] A. Mukherjee, B. Maiti, A. Das Sharma, R.N. Basu, H.S. Maiti, Correlation between slurry rheology, green density and sintered density of tape cast yttria stabilised zirconia, Ceramics International 27 (2001) 731-739.

DOI: 10.1016/s0272-8842(00)00121-8

Google Scholar

[23] P.K. Sekhar et al., Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control, Sensors and Actuators B, 144 (2010) 112-119.

DOI: 10.1016/j.snb.2009.10.045

Google Scholar

[24] D.L. West, F.C. Montgomery, T.R. Armstrong, A technique for monitoring SO2 in combustion exhausts: Use of a non-Nernstian sensing element in combination with an upstream catalytic filter, Sensors and Actuators B, 140 (2009) 482-489.

DOI: 10.1016/j.snb.2009.05.012

Google Scholar

[25] X. Liang, S. Yang et al., Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary, Sensors and Actuators B, 158 (2011) 1-8.

DOI: 10.1016/j.snb.2011.02.051

Google Scholar

[26] O. Bohnke, S. Ronchetti, D. Mazza, Conductivity measurements on nasicon and nasicon-modified materials, Solid State Ionics, 122 (1999) 127-136.

DOI: 10.1016/s0167-2738(99)00062-4

Google Scholar

[27] R.O. Fuentes, F.M. Figueiredo, F.M.B. Marques, J.I. Franco, Influence of microstructure on the electrical properties of NASICON materials, Solid State Ionics 140 (2001) 173-179.

DOI: 10.1016/s0167-2738(01)00701-9

Google Scholar