Orthogonality Measurement of Cross-Grating Based on Image Processing of Multi-Order Diffraction Patterns

Article Preview

Abstract:

Cross-gratings or two-dimensional gratings have found applications in precision displacement measurement for nanoscale machine tools or mask-wafer alignment in photo-lithography. The orthogonality of displacement measurement or alignment in two perpendicular directions is assured by the orthogonality of the grating grooves. Once the grooves are not exactly normal to each other, it should be calibrated before measurement or alignment to guarantee the accuracy. Scanning probe microscopy (SPM) and optical diffractometry (OD) are commonly used for highly accurate calibration of cross-grating orthogonality. In this paper, two methods based on diffraction are proposed for middle accuracy measurement at relative higher speed. At first, we briefly explain the configuration of each method. The calibration results of cross-gratings are shown. We also discuss the results of uncertainty analysis and the cause of main uncertainty sources.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Meli and R. Thalmann, Long-range AFM Profiler Used for Accurate Pitch Measurements, Meas. Sci. Technol. 9(10) (1998) 87-92.

DOI: 10.1088/0957-0233/9/7/014

Google Scholar

[2] I. Misumi, S. Gonda, Q. Huang and T. Keem, Sub-hundred Nanometer Pitch Measurements Using an AFM with Differential Laser Interferometers for Designing Usable Lateral Scales, Meas. Sci. Technol. 16(20) (2005) 80-90.

DOI: 10.1088/0957-0233/16/10/025

Google Scholar

[3] I. Misumi, S. Gonda, T. Kurosawa, Y. Tanimura, N. Ochiai, J. Kitta, F. Kubota, M. Yamada, Y. Fujiwara, Y. Nakayama and K. Takamasu, Submicrometre-Pitch Intercomparison between Optical Diffraction, Scanning Electron Microscope and Atomic Force Microscope, Meas. Sci. Technol. 14(20) (2003).

DOI: 10.1088/0957-0233/14/12/004

Google Scholar

[4] I. Misumi, S. Gonda, T. Kurosawa and K. Takamasu, Uncertainty in Pitch Measurements of One-dimensional Grating Standards Using a Nanometrological Atomic Force Microscope, Meas. Sci. Technol. 14(4) (2003) 63-71.

DOI: 10.1088/0957-0233/14/4/309

Google Scholar

[5] G. Dai, L. Koenders, F. Pohlenz, T. Dziomba and H. Danzebrink, Accurate and Traceable Calibration of One-dimensional Gratings, Meas. Sci. Technol. 16(124) (2005) 1-9.

DOI: 10.1088/0957-0233/16/6/001

Google Scholar

[6] G. Dai, F. Pohlenz, T. Dziomba, M. Xu, A. Diener, L. Koenders and H-U Danzebrink , Accurate and Traceable Calibration of Two-dimensional Grating, Meas. Sci. Technol. 18(4) (2007) 15-21.

DOI: 10.1088/0957-0233/18/2/s13

Google Scholar

[7] J. A. Kim, J. W. Kim, B. C. Park, T. B. Eom and C. S. Kang, Calibration of Two-dimensional Nanometer Gratings Using Optical Diffractometer and Metrological Atomic Force Microscope, Proc. SPIE 5879(5) (2005) 87-90.

DOI: 10.1117/12.614786

Google Scholar

[8] F. Meli, R. Thalman and P. Blattner, High Precision Pitch Calibration of Gratings Using Laser Diffractometry, Proc. 1st Int. Conf. on Precision Engineering and Nanotechnology 25 (1999) 2-5.

Google Scholar

[9] E. Buhr, W. Michael, A. Diener and W. Mirande, Multi-wavelength VIS/UV Optical Diffractometer for High-accuracy Calibration of Nano-scale Pitch Standards, Meas. Sci. Technol. 18(6) (2007) 67-74.

DOI: 10.1088/0957-0233/18/3/017

Google Scholar

[10] V. Korpelainen, A. Iho, J. Seppa and A. Lassila, High Accuracy Laser Diffractometer: Angle-scale Traceability by the Error Separation Method with a Grating, Meas. Sci. Technol. 20 (2009) 084020.

DOI: 10.1088/0957-0233/20/8/084020

Google Scholar

[11] C. Feng, M. Kajima, S. Gonda, K. Minoshima, H. Fujimoto and L. Zeng, Accurate Measurement of Orthogonality of Equal-period, Two-dimensional Gratings by an Interferometric Method, Metrologia 49(2012) 236-244.

DOI: 10.1088/0026-1394/49/3/236

Google Scholar